您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 五升六暑期奥数培训教材
1五升六暑期奥数培训教材目录第1讲小数的巧算与速算第2讲用等量代换求面积第3讲数学游戏-----智取火柴第4讲和差问题第5讲和倍问题第6讲差倍问题第7讲年龄问题第8讲:分解质因数第9讲:最小公倍数第10讲还原问题第11讲周期问题第12讲鸡兔同笼问题与假设法第13讲盈亏问题与比较法(一)第14讲盈亏问题与比较法(二)第15讲逻辑问题2第一讲小数的巧算与速算【例1】.简算:(1)9968068...思路导航:题中,9.9接近10,且6.8和0.68都是有6、8这两个数字。解法一:解法二:9968068...9968068...=99×0.68+1×0.68=9.9×6.8+0.1×6.8=(99+1)×0.68=(9.9+0.1)×6.8=100×0.68=10×6.8=68=68想想还有别的解法吗?同步导练一:(1)272.4×6.2+2724×0.38(2)1.25×6.3+37×0.125(3)7.24×0.1+0.5×72.4+0.049×724(4)6.49×0.22+258×0.0649+5.3×6.49+64.9×0.19【例2】:(2+0.48+0.82)×(0.48+0.82+0.56)-(2+0.48+0.56)×(0.48+0.82)思路导航:整个式子是乘积之差的形式,它们构成很有规律,如果把2+0.48+0.82用A表示,把0.48+0.82用B表示,则原式化为A×(B+0.56)-(A+0.56)×B,再利用乘法分配律计算,大大简化了计算过程.解:设A=2+0.48+0.82B=0.48+0.82,原式=A×(B+0.56)-(A+0.56)×B=A×B+A×0.56-(A×B+0.56×B)=A×B+A×0.56-A×B-0.56×B=0.56×(A-B)=0.56×2=1.123同步导练二:(1)(3.7+4.8+5.9)×(4.8+5.9+7)-(3.7+4.8+5.9+7)×(4.8+5.9)(2)(4.6+4.8+7.1)×(4.8+7.1+6)-(4.6+4.8+7.1+6)×(4.8+7.1)【例三】:计算76.8÷56×14思路导航:这道题是乘除同级运算,解答时,利用添括号法则,在“÷”后面添括号,括号里面要变号,“×”变“÷”,“÷”变“×”。不过,同学们请注意,这种方法只适用于乘、除同级运算。解:76.8÷56×14=76.8÷(56÷14)=76.8÷4=19.2同步导练三:(1)144÷15.6×13(2)6355711(3)()()4875812425274【例四】:0.999×0.7+0.111×3.7思路导航:本类题可以将原式进行合理的等值变形后,再运用适当的方法进行简便运算=0.111×9×0.7+0.111×3.7=0.111×6.3+0.111×3.7=0.111×(6.3+3.7)=0.111×10=1.11同步导练四:(1)0.999×0.6+0.111×3.6(2)0.222×0.778+0.444×0.111(3)0.888×0.9+0.222×6.4(4)0.111×5.5+0.555×0.95.下面有两个小数:a=0.00…0125b=0.00…081996个02000个0试求a+b,a-b,ab,ab.5第2讲用等量代换求面积一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。所以,阴影部分的面积是17厘米2。例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。6分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD的面积,就能依次求出三角形ECB的面积和EC的长,从而求出ED的长。梯形ABCD面积=(8+4)×6÷2=36(厘米2),三角形ECB面积=36-18=18(厘米2),EC=18÷6×2=6(厘米),ED=6-4=2(厘米)。例4下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差。分析:直接求出三角形BCO与三角形EFO的面积之差,不太容易做到。如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了。解法一:连结B,E(见左下图)。三角形BCO与三角形EFO都加上三角形BEO,则原来的问题转化为求三角形BEC与三角形BEF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。7解法二:连结C,F(见右上图)。三角形BCO与三角形EFO都加上三角形CFO,则原来的问题转化为求三角形BCF与三角形ECF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。解法三:延长BC交GF于H(见下页左上图)。三角形BCO与三角形EFO都加上梯形COFH,则原来的问题转化为求三角形BHF与矩形CEFH的面积之差。所求为(4+2)×(10-7)÷2-2×(10-7)=3。解法四:延长AB,FE交于H(见右上图)。三角形BCO与三角形EFO都加上梯形BHEO,则原来的问题转化为求矩形BHEC与直角三角形BHF的面积之差。所求为4×(10-7)-(10-7)×(4+2)÷2=3。例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积分析与解:这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系。连结AD(见右上图),可以看出,三角形ABD与三角形ACD的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等。因为三角形AFD是三角形ABD与三角形ACD的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABF与三角形FCD面积仍然相等。根据等量代换,求三角形ABC的面积等于求三角形BCD的面积,等于4×4÷2=8(厘米2)。8练习:1.右上图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。2.下页左上图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF的面积大9厘米2,求ED的长。6.右上图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米2,求CD的长。影部分的面积和。9第3讲数学游戏------智取火柴在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。例1桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。规定谁取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取,那么谁将获胜?例2在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?例3将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?有许多游戏虽然不是取火柴的形式,但游戏取胜的方法及分析思路与取火柴游戏完全相同。例4两人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁胜。你选择先报数还是后报数?怎样才能获胜?例5、1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。规定将棋子移到最后一格者输。甲为了获胜,第一步必须向右移多少格?10例6今有两堆火柴,一堆35根,另一堆24根。两人轮流在其中任一堆中拿取,取的根数不限,但不能不取。规定取得最后一根者为赢。问:先取者有何策略能获胜?请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗?例7有3堆火柴,分别有1根、2根与3根火柴。甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜。如果采用最佳方法,那么谁将获胜?练习1.桌上有30根火柴,两人轮流从中拿取,规定每人每次可取1~3根,且取最后一根者为赢。问:先取者如何拿才能保证获胜?2.有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输。如果甲先取,那么谁将获胜?113.甲、乙二人轮流报数,甲先乙后,每次每人报1~4个数,谁报到第888个数谁胜。谁将获胜?怎样获胜?4.有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜。如果甲后取,那么他一定能获胜吗?5.黑板上写着一排相连的自然数1,2,3,…,51。甲、乙两人轮流划掉连续的3个数。规定在谁划过之后另一人再也划不成了,谁就算取胜。问:甲有必胜的策略吗?6.有三行棋子,分别有1,2,4枚棋子,两人轮流取,每人每次只能在同一行中至少取走1枚棋子,谁取走最后一枚棋子谁胜。问:要想获胜是先取还是后取?12第4讲和差问题和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。解答这类应用题通常用假设法,同时结合线段图进行分析。解题时,我们可以假设小数增加到与大数同样多,先求大数再求小数;也可以假设大数减少到与小数同样多,先求小数再求大数。我们可以用下面的数量关系式表示:(和+差)÷2=大数(和-差)÷2=小数1.学校合唱团共有72名成员,其中男合唱队员比女合唱队员少6名,合唱团中男、女队员各有多少名?2.甲乙两校共有学生2346人,如果甲校增加146人,乙校减少88人,两校的学生人数就相等,你知道两校实际各有多少人吗?3.两个工程队共有工人230人,后来由于工作需要,从第一队调走了30人,从第二队调走了10人,这时第一队比第二队还多10人,原来两队各有多少工人?4.在一个减法算式里,被减数、减数与差这三个数之和是388,减数比差大16。减数是多少?13第5讲和倍问题已知大小两个数的和及它们的倍数关系,求大小两个数的问题叫和倍问题。解这类应用题关键是要找准标准数(即1倍数),一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准数的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。数量关系可表示为:两数和÷(倍数+1)=小数(1倍数)小数(1倍数)×倍数=大数(几倍数)或两数和—小数(1倍数)=大数(几倍数)解决和倍问题,为了理解题意,可以画出线段图,使数量关系一目了然。1、三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模?2、哥哥和弟弟共有图书120本,哥哥的图
本文标题:五升六暑期奥数培训教材
链接地址:https://www.777doc.com/doc-4672756 .html