您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 清华大牛的SAR-ADC论文
低功耗逐次逼近模数转换器的研究与设计StudyandDesignofLow-powerSuccessiveApproximationAnalog-to-digitalConverter(申请清华大学工学硕士学位论文)培养单位:电子工程系学科:电子科学与技术研究生:孙彤指导教师:李冬梅副教授二○○七年五月两低功耗逐次逼近模数转换器的研究与设计孙彤摘要I摘要逐次逼近模数转换器(ADC)具有中等转换精度和中等转换速度,采用CMOS工艺实现可以保证较小的芯片面积和低功耗,而且易于实现多路转换,在精度、速度、功耗和成本方面具有综合优势,被广泛应用于工业控制、医疗仪器以及微处理器辅助模数转换接口等领域。论文工作设计了一个电源电压为2.5V,精度为12位,速度为500kS/s的低功耗逐次逼近ADC。电路采用单端轨到轨输入,并具有省电模式。研究工作主要分为三个部分:①研究设计了一个分段电容式数模转换器(DAC),高端低端各6位,共有128个单位电容,减小了芯片面积,降低了动态功耗,而且高3位采用温度计编码,保证了DAC高位的单调性;分段电容阵列的版图采用共中心的对称布局,以提高电容的匹配精度。②对多级结构比较器进行了研究设计。比较器由三级前置放大器和一级锁存器组成,根据每级前置放大器的位置不同,对它们的增益、带宽、功耗进行了优化,每级前置放大器和模拟缓冲级电路的设计也减小了回程噪声的影响;比较器的设计应用了失调校准技术。仿真结果显示,该比较器可以有效消除10mV输入失调,能够在10MHz速度下分辨0.2mV输入电压,功耗只有600uW,达到了设计要求。③对控制电路进行了研究设计。采用分模块设计方法,使用verilog-HDL描述、自动综合、布局布线生成,能够控制模拟部分完成逐次逼近过程,并可以根据片选信号时间长短控制芯片进入省电模式或者工作模式。论文工作在完成ADC电路设计仿真的基础上,完成了整个电路的物理版图设计、后仿真及芯片的测试。该逐次逼近ADC采用UMC0.18um混合信号CMOS工艺设计制造,芯片面积为1.4mm×1mm。实测结果显示,在500kS/s下,其SNDR为63.13dB,即ENOB为10.5位,|DNL|小于2LSB,|INL|小于4LSB,功耗为1.2mW。关键词:逐次逼近模数转换器数模转换器比较器AbstractIIAbstractSuccessiveapproximationanalog-to-digitalconverters(ADCs)havemediumresolutionandmediumspeed,smallchipareaandlowpowerconsumptioncanalsobeachievedinCMOSprocess.Moreover,itisconvenienttomakemulti-channelconversion.Duetotheirmixedadvantagesinresolution,speed,powerandcost,successiveapproximationADCsarewidelyappliedinindustrycontrolling,medicalinstruments,auxiliaryanalog-to-digitalinterfacesofmicro-processorsandsoon.A2.5V,12bit,500kS/slow-powersuccessiveapproximationADCisdesignedinthisthesis,whichadoptssinglerail-to-railinputandhaspower-downmode.Studyworkcanbecategorizedinto3parts:①Asegmentedcapacitivedigital-to-analogconverter(DAC)isdesignedwith2separated6-bitarrayswhichconsistof128unitcapacitorsinall,resultinginsmallerchipareaandlowerdynamicpower.Moreover,thermometercodingisappliedtothetop3bits,ensuringtheDAC’smonotonicity.Commoncentroidgeometryisintroducedinthelayouttoimprovematchingproperty.②Amulti-stagecomparatorisdesigned,whichiscomposedof3pre-amplifiersandalatch.Eachpre-amplifierisoptimizedaccordingtoitsposition,thedesignofthemandtheanalogbufferhasalreadytakenkickbacknoiseintoconsideration.Anoffsetcancellationtechniqueisappliedtoo.Simulationresultsshowthat,theproposedcomparatorcandistinguish0.2mVinputwith10mVoffsetat10MHz,whileitspoweris600uW.③Thecontrolcircuitisdesignedinseveralmodules,whichisdescribedinverilog-HDL,synthesized,placedandroutedautomatically.Thisdigitalblockcoordinatesanalogcircuitstofinishthesuccessiveapproximation,andswitchesthechipintopower-downmodeorworkmode.Aftercircuitdesignandsimulation,thephysicallayoutdesign,post-simulationandchipmeasurementarealsofinished.TheproposedADCisdesignedandfabricatedinUMC0.18umMixedModeCMOSprocess,occupying1.4mm×1mm.Measurementresultsshowthat,itsSNDRachieves63.13dBat500kS/s,thusENOBis10.5bit,and|DNL|islessthan2LSB,|INL|islessthan4LSB,withoverallpoweronly1.2mW.Keywords:successiveapproximationADCDACcomparator目录III目录第1章引言...............................................................................................................11.1选题背景及意义...............................................................................................11.2研究工作主要内容...........................................................................................21.3论文各部分主要内容.......................................................................................3第2章逐次逼近ADC概述.....................................................................................42.1逐次逼近ADC的工作原理.............................................................................42.2逐次逼近ADC的典型结构.............................................................................52.2.1电压定标型逐次逼近ADC........................................................................52.2.2电流定标型逐次逼近ADC........................................................................72.2.3电荷定标型逐次逼近ADC........................................................................82.2.4其他结构逐次逼近ADC..........................................................................132.3逐次逼近ADC的研究现状...........................................................................13第3章DAC的研究与设计....................................................................................153.1DAC结构的选择............................................................................................153.2分段电容DAC的工作原理...........................................................................153.3分段电容DAC的电路设计...........................................................................173.4分段电容DAC的版图设计...........................................................................223.4.1电容匹配精度...........................................................................................223.4.2抑制干扰...................................................................................................25第4章比较器的研究与设计.................................................................................254.1比较器的典型结构.........................................................................................254.1.1运放结构比较器..................................................
本文标题:清华大牛的SAR-ADC论文
链接地址:https://www.777doc.com/doc-4686272 .html