您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 用放缩法证明数列中的不等式(上课用)(非常经典)
用放缩法证明数列中的不等式高二理科周考卷(4.17)14.已知函数1lnxfxxax(其中0a,e2.7).(1)当1a时,求函数fx在1,1f点处的切线方程;(2)若函数fx在区间2,上为增函数,求实数a的取值范围;(3)求证:对于任意大于1的正整数n,都有111ln23nn.周考卷的思考试题解析(3)当1a时,1lnxfxxx,21xfxx,当1x时,0fx,故fx在1,上是增函数.当1n时,令1nxn,则当1x时,10fxf.所以111lnln0111nnnnfxnnnnn,所以1ln1nnn,21311ln,ln,,ln12231nnn,所以23111lnlnln12123nnn,即23111ln()12123nnn,所以111ln23nn,即对于任意大于1的正整数n,都有111ln23nn放缩法证明数列不等式是数列中的难点内容,在近几年的广东高考数列试题中都有考查.放缩法灵活多变,技巧性要求较高,所谓“放大一点点就太大,缩小一点点又太小”,这就让同学们找不到头绪,摸不着规律,总觉得高不可攀!高考命题专家说:“放缩是一种能力.”如何把握放缩的“度”,使得放缩“恰到好处”,这正是放缩法的精髓和关键所在!其实,任何事物都有其内在规律,放缩法也是“有法可依”的,本节课我们一起来研究数列问题中一些常见的放缩类型及方法,破解其思维过程,揭开其神秘的面纱,领略和感受放缩法的无限魅力!常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下4种:①形如1niiak(k为常数);②形如1()niiafn;③形如1()niiafn;④形如1niiak(k为常数).一.放缩目标模型——可求和2311111()2222nnN求证:例1231232()2222nnnN求证:变式12311111()21212121nnN求证:变式2231232()2122232nnnnN求证:变式31(niiakk为常数)形(一)如不等式左边可用等比数列前n项和公式求和.分析左边11(1)22112n112n12311111()2222nnN求证:例1表面是证数列不等式,实质是数列求和不等式左边可用“错位相减法”求和.分析由错位相减法得222nn2231232()2222nnnN求证:变式1表面是证数列不等式,实质是数列求和231232222nn左边不能直接求和,须先将其通项放缩后求和,如何放缩?分析2311111()21212121nnN求证:变式2将通项放缩为等比数列注意到11212nn左边11(1)22112n112n12311112222n左边不能直接求和,须先将其通项放缩后求和,如何放缩?分析注意到222nn2231232()2122232nnnnN求证:变式3231232222nn左边22nnnnn将通项放缩为错位相减模型【方法总结之一】放缩法证明与数列求和有关的不等式,若1niia可直接求和,就先求和再放缩;若不能直接求和的,一般要先将通项na放缩后再求和.问题是将通项na放缩为可以求和且“不大不小”的什么样的nb才行呢?其实,能求和的常见数列模型并不多,主要有等差模型、等比模型、错位相减模型、裂项相消模型等.实际问题中,nb大多是等比模型或裂项相消模型.201319)11111()133557(21)(21)2nnnN(广东文第(3)问求证:例222211112()23nnN求证:变式12221117(201319(3))1()234nnN广东理第:问求证变式222211151()233nnN求证:变式3左边可用裂项相消法求和,先求和再放缩.分析11(1)221n12201319)11111()133557(21)(21)2nnnN(广东文第(3)问求证:例2表面是证数列不等式,实质是数列求和111111[(1)()()]23352121nn左边1111()(21)(21)22121nnnn左边不能求和,应先将通项放缩为裂项相消模型后求和.分析111n22()n保留第一项,从第二项开始放缩111111(1)()()2231nn左边21n22211112()23nnN求证:变式11(1)nn11()12nnn当n=1时,不等式显然也成立.变式2的结论比变式1强,要达目的,须将变式1放缩的“度”进行修正,如何修正?分析2221117(201319(3))1()234nnN广东理第:问求证变式2保留前两项,从第三项开始放缩思路一211(1)nnn左边111142n714n374()n211111111()()()223341nn111nn(3)n将变式1的通项从第三项才开始放缩.当n=1,2时,不等式显然也成立.变式2的结论比变式1强,要达目的,须将变式1放缩的“度”进行修正,如何修正?分析2221117(201319(3))1()234nnN广东理第:问求证变式2保留第一项,从第二项开始放缩思路二22111nn左边11111(1)221nn111(1)22274()n1111111(1)()()232411nn111()211nn(2)n将通项放得比变式1更小一点.当n=1时,不等式显然也成立.变式3的结论比变式2更强,要达目的,须将变式2放缩的“度”进一步修正,如何修正?分析保留前两项,从第三项开始放缩思路一左边1111111()42231nn11111()4223353()n2111111111()()()22243511nn22211151()233nnN求证:变式322111nn111()211nn(3)n将变式2思路二中通项从第三项才开始放缩.当n=1,2时,不等式显然也成立.变式3的结论比变式2更强,要达目的,须将变式2放缩的“度”进一步修正,如何修正?分析保留第一项,从第二项开始放缩思路二22144nn左边1112()321n1123253()n11111112()()()35572121nn112()2121nn(2)n将通项放得比变式2思路二更小一点.22211151()233nnN求证:变式32441n当n=1时,不等式显然也成立.评注放缩法的证明过程就像“秋风扫落叶”一样干脆利落!对21n放缩方法不同,得到的结果也不同.显然57234,故后一个结论比前一个结论更强,也就是说如果证明了变式3,那么变式1和变式2就显然成立.对21n的3种放缩方法体现了三种不同“境界”,得到211nkk的三个“上界”,其中53最接近22116kk(欧拉常数).【方法总结之二】放缩法证明与数列求和有关的不等式的过程中,很多时候要“留一手”,即采用“有所保留”的方法,保留数列的第一项或前两项,从数列的第二项或第三项开始放缩,这样才不致使结果放得过大或缩得过小.22221112111(201715)2()23nnnN全国高中数学联赛天津市如果整数,证例预赛第题明求证:721231=431111121111(279))(012nnnnnnnnaaanNaanaaaaN前n项和为S的正项数列,满足+2S求数列的通全国高中数学联赛河北省项公式;求证:预赛例第题8牛刀小试(变式练习1)*22211151()35(21)4nnN求证:证明21(21)n111(1)4n114254n1111111(1)()()42231nn14(1)nn(2)n2144nn111()41nn左边当n=1时,不等式显然也成立.(08·辽宁卷)已知:2(1),(1)nnannbn求证:.1122111512nnababab11(1)(21)nnabnn故1111111111()6223341niiiabnn51122(1)5.12n(2)n当时,有也成立.1n15612111()212(11)nnnn练习:已知数列中,求证:.{}na221nnna1(1)3niiiaa当时,有也成立.1n2322(1)(21)(21)(21)(22)iiiiiiiiaa111211(2)(21)(21)2121iiiiii21111111(1)2()()33(2)2121212121niinnniaan常见的裂项放缩技巧:)1(212n22112)1(2nnnnnnnnn)2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112nnnnnnnnnnnnnn)3()111(2)1(21212)1(1)(1)11(12n21210nnnnnnnCCCCCnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn111)1(111)1(11111211212)12)(12(4144441111121)1)(1(11112222224.1.3.5.6.2.右边保留第一项1111231001111231(2009200)0S珠海二求模理第(2)的整.问例数部分3分析不能直接求和式S,须将通项1n放缩为裂项相消模型后求和.122nn21nn2(1)nn21nn2(1)nn12(1001)19182(1011)18S的整数部分是思路为了确定S的整数部分,必须将S的值放缩在相邻的两个整数之间.分析思路左边32nn211111333n22331(2011113()3232322193(3))22nnnN求广东理第:问证例4利用指数函数的单调性放缩为等比模型∵23[1()]3nn123[1()]3n13n∴*111()323nnnnN11331213n左边不能直接求和,考虑将通项放缩为等比模型后求和,哪个等比数列的和接近32?分析左边32n21111(1)733n23111117()3214323232nnN求证:例4变式∵2=3(1)3nn223(1)3n273n∴211173(2)nnan1311(1)143n(2)n保留第一项,从第二项开始放缩左边不能直接求和,能否仿照例4的方法将通项也放缩为等比模型后求和?3171141(2)4n当n=1时,不等式显然也成立.【方法总结之三】一般地,形如nnnaab或nnaab(这里1
本文标题:用放缩法证明数列中的不等式(上课用)(非常经典)
链接地址:https://www.777doc.com/doc-4729344 .html