您好,欢迎访问三七文档
立体几何1.空间几何体的结构特征(1)多面体①棱柱的侧棱都,上、下底面是的多边形.②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.③棱台可由平行于底面的平面截棱锥得到,其上、下底面是多边形.平行且相等全等相似知识梳理1知识梳理答案(2)旋转体①圆柱可以由绕其一边所在直线旋转得到.②圆锥可以由直角三角形绕其所在直线旋转得到.③圆台可以由直角梯形绕所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到.④球可以由半圆或圆绕所在直线旋转得到.矩形直角边直角腰直径答案(1)常见旋转体的三视图①球的三视图都是半径相等的圆.②水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.③水平放置的圆台的正视图和侧视图均为全等的等腰梯形.④水平放置的圆柱的正视图和侧视图均为全等的矩形.知识拓展1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是,表面积是侧面积与底面面积之和.所有侧面的面积之和答案圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=S圆锥侧=S圆台侧=2.圆柱、圆锥、圆台的侧面展开图及侧面积公式2πrlπrlπ(r1+r2)l答案名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=锥体(棱锥和圆锥)S表面积=S侧+S底台体(棱台和圆台)S表面积=S侧+S上+S下球S=3.柱、锥、台和球的表面积和体积Sh4πR213Sh43πR3答案表面积、全面积和侧面积•表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)•全面积全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和•侧面积指立体图形的各个侧面的面积之和(除去底面)棱柱、棱锥、棱台的侧面积•侧面积所指的对象分别如下:•棱柱----直棱柱。•棱锥----正棱锥。•棱台----正棱台作直三棱柱、正三棱锥、正三棱台各一个,找出斜高CBAA1B1C1COBAPDC1D1A1ODBACB1斜高的概念2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是什么形状的图形.ABCDABCABCD矩形等腰三角形等腰梯形①直棱柱:设棱柱的高为h,底面多边形的周长为c,则S直棱柱侧=.(类比矩形的面积)②圆柱:如果圆柱的底面半径为r,母线长为l,那么S圆柱侧=.(类比矩形的面积)ch2πrl知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积圆柱的侧面展开图是矩形2222()SrrlrrlOOrl2r底侧表面积SSS2①正棱锥:设正棱锥底面正多边形的周长为c,斜高为h′,则S正棱锥侧=.(类比三角形的面积)②圆锥:如果圆锥的底面半径为r,母线长为l,那么S圆锥侧=.(类比三角形的面积)1∕2ch′πrl(2)锥体的侧面积圆锥的侧面展开图是扇形r2lOr2()Srrlrrl①正棱台:设正n棱台的上底面、下底面周长分别为c′、c,斜高为h′,则正n棱台的侧面积公式:S正棱台侧=.②圆台:如果圆台的上、下底面半径分别为r′、r,母线长为l,则S圆台侧=.1∕2(c+c′)h′πl(r′+r)(3)台体的侧面积注:表面积=侧面积+底面积.参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么.r2lOrO’'r'2r圆台的侧面展开图是扇环2'2'()Srrrlrl思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?1r2rl扇环lrrSS)21(==扇环圆台侧r2lOrO’'r'2r2'2'()Srrrlrlx'rxrxl''rxrxrlS侧''()()rlxrxrlrxrx'()rlrllOrO’'r圆柱、圆锥、圆台三者的表面积公式之间有什么关系?lOOrlOr2222()Srrlrrl2()Srrlrrl2'2'()Srrrlrl小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式')'cc21hS+(=正棱台C’=0'21chS=三棱锥C’=CchchS'=直棱柱S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)lr1=0r1=r2例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E例3:圆台的上、下底面半径分别为2和4,高为,求其侧面展开图扇环所对的圆心角32分析:抓住相似三角形中的相似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为______;答:60例2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积79答:例3已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.DBCAS分析:四面体的展开图是由四个全等的正三角形组成.因为BC=a,aSBSD2360sin所以:243232121aaaSDBCSABC因此,四面体S-ABC的表面积.交BC于点D.解:先求的面积,过点S作,ABCBCSD例4(2010年广东省惠州市高三调研)如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D,E是CC1,BC的中点,AE=DE.(1)求此正三棱柱的侧棱长;(2)正三棱柱ABC-A1B1C1的表面积.【思路点拨】(1)证明△AED为直角三角形,然后求侧棱长;(2)分别求出侧面积与底面积.【解】(1)设正三棱柱ABC-A1B1C1的侧棱长为x.∵△ABC是正三角形,∴AE⊥BC.又底面ABC⊥侧面BB1C1C,且交线为BC,∴AE⊥侧面BB1C1C,在Rt△AED中,由AE=DE,得1+x24=3,解得x=22.即正三棱柱的侧棱长为22.【点评】求表面积应分别求各部分面的面积,所以应弄清图形的形状,利用相应的公式求面积,规则的图形可直接求,不规则的图形往往要再进行转化,常分割成几部分来求.(2)S=S侧+S底,S侧=3×2×22=122,S底=12×3×2×2=23,∴S=S侧+S底=122+23.公理1、长方体的体积等于它的长、宽、高的积。V长方体=abc推论1、长方体的体积等于它的底面积s和高h的积。V长方体=sh推论2、正方体的体积等于它的棱长a的立方。V正方体=a3定理1:柱体(棱柱、圆柱)的体积等于它的底面积s和高h的积。V柱体=sh二:柱体的体积推论:底面半径为r,高为h圆柱的体积是V圆柱=r2h3.1.锥体(棱锥、圆锥)的体积(底面积S,高h)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题:锥体(棱锥、圆锥)的体积shV31三棱锥定理︰如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:推论:如果圆锥的底面半径是r,高是h,那么它的体积是:hSSV锥体=Sh3131V圆锥=πr2hShss/ss/hx四.台体的体积V台体=1h(s+ss'+s')3上下底面积分别是s/,s,高是h,则推论:如果圆台的上,下底面半径是r1.r2,高是h,那么它的体积是:31V圆台=πh)(222121rrrr五.柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,h为柱体高ShV0SS分别为上、下底面面积,h为台体高ShV31SSS为底面面积,h为锥体高上底扩大上底缩小(1)长方体的体积V长方体=abc=.(其中a、b、c为长、宽、高,S为底面积,h为高)(2)柱体(圆柱和棱柱)的体积V柱体=Sh.其中,V圆柱=πr2h(其中r为底面半径).Sh知识点二.柱、锥、台、球的体积(3)锥体(圆锥和棱锥)的体积V锥体=13Sh.其中V圆锥=,r为底面半径.1∕3πr2h(4)台体的体积公式V台=13h(S+𝑺𝑺′+S′).注:h为台体的高,S′和S分别为上下两个底面的面积.其中V圆台=.注:h为台体的高,r′、r分别为上、下两底的半径.(5)球的体积V球=.1∕3πh(r2+rr′+r′2)4∕3πR3规律方法总结1.直棱柱的侧面展开图是一些矩形,正棱锥的侧面展开图是一些全等的等腰三角形,正棱台的侧面展开图是一些全等的等腰梯形.2.斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长与侧棱长的乘积.3.如果直棱柱的底面周长是c,高是h,那么它的侧面积是S直棱柱侧=ch.4.应注意各个公式的推导过程,不要死记硬背公式本身,要熟悉柱体中的矩形、锥体中的直角三角形、台体中的直角梯形等特征图形在公式推导中的作用.规律方法总结5.如果不是正棱柱、正棱锥、正棱台,在求其侧面积或全面积时,应对每一个侧面的面积分别求解后再相加.6.求球的体积和表面积的关键是求出球的半径.反之,若已知球的表面积或体积,那么就可以得出其半径的大小.7.计算组合体的体积时,首先要弄清楚它是由哪些基本几何体构成,然后再通过轴截面分析和解决问题.8.计算圆柱、圆锥、圆台的体积时,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.求锥体的体积,要选择适当的底面和高,然后应用公式进行计算即可.常用方法:割补法和等积变换法.(1)割补法:求一个几何体的体积可以将这个几何体分割成几个柱体、锥体,分别求出锥体和柱体的体积,从而得出几何体的体积.(2)等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积性”可求“点到面的距离”.探究提高ShV31方法与技巧1.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.要注意将空间问题转化为平面问题.3.当给出的几何体比较复杂,有关的计算公式无法运用,或者虽然几何体并不复杂,但条件中的已知元素彼此离散时,我们可采用“割”、“补”的技巧,化复杂几何体为简单几何体(柱、锥、台),或化离散为集中,给解题提供便利.思想方法感悟提高(1)几何体的“分割”几何体的分割即将已知的几何体按照结论的要求,分割成若干个易求体积的几何体,进而求之.(2)几何体的“补形”与分割一样,有时为了计算方便,可将几何体补成易求体积的几何体,如长方体、正方体等.另外补台成锥是常见的解决台体侧面积与体积的方法,由台体的定义,我们在有些情况下,可以将台体补成锥体研究体积.(3)有关柱、锥、台、球的面积和体积的计算,应以公式为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素.失误与防范1.将几何体展开为平面图形时,要注意在何处剪开,多面体要选择一条棱剪开,旋转体要沿一条母线剪开.2.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图.1.四个公理公理1:如果一条直线上的在一个平面内,那么这条直线在此平面内.公理2:过的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们过该点的公共直线.公理4:平行于同一条直线的两条直线.两点不在一条直线上有且只有一条平行答案直线直线2.直线与直线的位置关系(1)位置关系的分类平行共面直线异面直线:不同在一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a
本文标题:立体几何及面积体积
链接地址:https://www.777doc.com/doc-4730831 .html