您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学新课程创新教学设计案例50篇 22 直线方程的概念与直线的斜率
22直线方程的概念与直线的斜率教材分析这节内容从一个具体的一次函数及其图像入手,引入直线方程和方程的直线的概念.从研究直线方程的需要出发,引入直线在平面直角坐标系中的倾斜角和斜率的概念.然后建立了过两点的直线的斜率公式.直线方程的概念是通过初中学过的一次函数的图像引入的,是将一次函数与其图像的关系转换成直线方程与直线的对应关系.对这种关系的学习,要通过观察图像,研究图像,利用数形结合的思想,归纳和概括出什么是直线的方程和方程的直线,使学生对直线和直线方程的关系有一个初步了解.倾斜角和斜率公式都是反映直线相对于x轴正方向的倾斜程度的,确切地说,倾斜角是直接反映这种倾斜程度的,斜率公式是利用直线上点的坐标来研究直线的倾斜程度的.解析几何是用数来研究形的,在研究直线时,使用斜率公式比使用倾斜角更方便,因此正确理解斜率的概念,掌握过两点的直线的斜率公式,是学习这节内容的重点,也是学好平面解析几何的关键.教学目标1.通过对本节的学习,了解直线的方程和方程的直线的概念,理解直线的倾斜角和斜率的概念,会准确地表述直线的倾斜角和斜率的意义.2.理解并掌握过两点的直线的斜率公式,并能用其解决有关的数学问题.3.初步培养学生数形结合的思想,提高学生联系、转化、归纳、概括的思维能力,进一步培养学生的创新意识和分析问题、解决问题的能力.任务分析这节内容是在一次函数的基础上,通过研究一次函数和它的图像的关系,而引入的直线和方程的关系.对于直线和方程的关系,学生接受起来可能比较困难,因此在学习时要始终结合具体的直线方程和它的图像来研究,以增强直观性,便于被学生理解.直线的倾斜角和斜率是描述直线倾斜程度的,在学习过程中,一方面要注意有关概念之间的区别,另一方面要突出它们之间的联系,要充分利用图像进行具体分析,让学生注意斜率的变化和倾斜角的关系,特别是当直线的倾斜角为直角时,直线的斜率不存在的情况,进一步强调:有斜率必有倾斜角与之对应;反之,有倾斜角必有斜率与之对应是不够确切的.在这节的学习中,要让学生体会“形”与“数”相互转化的思想,培养学生分析、联想、抽象、概括的能力.教学设计一、问题情境1.在初中,我们学习过一次函数y=kx+b,(k≠0),知道它的图像是一条直线l,那么满足y=kx+b的有序实数对(x,y)与直线l上的点的坐标有什么关系?能否把它推广到一般的二元一次方程和直线?2.作出函数y=2x+1的图像,研究满足y=2x+1的有序实数对与y=2x+1的图像上点的坐标的关系.二、建立模型1.学生分析讨论,师生共同总结(1)有序实数对(0,1)满足函数y=2x+1,在直线l上就有一点A,它的坐标是(0,1);又如有序实数对(2,5)满足函数y=2x+1,在直线l上就有一点B,它的坐标是(2,5).(2)在直线l上取一点P(1,3),则有序实数对(1,3)就满足函数y=2x+1;又如在直线l上取一点Q(-1,-1),则有序实数(-1,-1)就满足函数y=2x+1.结论:一般地,满足函数式y=kx+b的每一对x,y的值,都是直线l上的点的坐标;反之,直线l上每一点的坐标(x,y)都满足函数式y=kx+b,因此,一次函数y=kx+b的图像是一条直线,它是以满足y=kx+b的每一对x,y的值为坐标的点构成的.2.教师明晰从方程的角度看,函数y=kx+b可以看作二元一次方程y-kx-b=0,这样“满足一次函数y=kx+b的每一对(x,y)的值”,就是“二元一次方程y-kx-b=0的解x,y”;以方程y-kx-b=0的解为坐标的点就在函数y=kx+b的图像上;反过来,函数y=kx+b的图像上的任一点的坐标满足方程y-kx-b=0,这样直线和方程就建立了联系.一般地,如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上点的坐标都是这个方程的解,那么这个方程叫作这条直线的方程;这条直线叫这个方程的直线.由于方程y=kx+b的图像是一条直线,因而我们今后就常说直线y=kx+b.练习:已知方程2x+3y+6=0.(1)把这个方程改写成一次函数.(2)画出这个方程对应的直线l.(3)判定点(,1),(-3,0)是否在直线l上.进一步思考如下问题:哪些条件可以确定一条直线?在平面直角坐标系中,过点P的任何一条直线l,对x轴的相应位置有哪些情形?如何刻画它们的相对位置?3.通过学生讨论,师生共同总结直线相对x轴的情形有四种,如图所示:通过分析四种情形,师生共同得出:直线相对x轴的位置情形,可用直线l和x轴所成的角来描述.我们规定:x轴正向与直线向上的方向所成的角叫作这条直线的倾斜角,与x轴平行或重合的直线的倾斜角为零度角.问题:(1)在直角坐标系中,画出过点P(-1,2),倾斜角分别为45°,150°,0°,90°的四条直线.(2)直线的倾斜角的取值范围是怎样的?通过讨论师生共同明确:直线的倾斜角的取值范围是0°≤α<180°.在此范围的直角坐标平面上的任何一条直线都有唯一的倾斜角,而每一个倾斜角确定一条直线的方向.倾斜角直观地表示了直线相对x轴正方向的倾斜程度.从上面的讨论可以看出,直线在坐标系中的倾斜程度可以用倾斜角直观地来表示.我们知道,当一条直线上的两个点确定时,这条直线也就随之确定了,那么现在的问题是:如果已知直线上两点P1(x1,y1),P2(x2,y2),那么如何用x1,y1,x2,y来量化直线P1P2的倾斜程度呢?在教师的启发下,引导学生作如下探索:直线y=kx+b被其上的任意两个不同的点唯一确定(如图22-3).因此,由该直线上任意两点A(x1,y1),B(x2,y2)的坐标可以计算出k的值.由于x1,y1和x2,y2是直线方程的两组解,所以y1=kx1+b,y2=kx2+b.两式相减,得y2-y1=kx2-kx2=k(x2-x1).所以由直线上两点的坐标求该直线的斜率k与这两点在直线上的顺序无关,可知如果令Δx=x2-x1,Δy=y2-y1,则Δx表示变量x的改变量,Δy表示相应的y的改变量.于是因此,我们把直线y=kx+b中的系数k叫作该直线的斜率.垂直于x轴的直线不存在斜率.想想看:(1)在函数方程y=kx中,如果x表示某物体运动的时间(t),y表示在时刻x时运动过的距离(m),那么k表示的意义是什么?k=60,120,…的具体意义是什么?(2)如果在函数方程y=120x中,x表示某商店销售某个商品的数量,y表示销售所得的总收入(元),那么斜率k=120表示的意义是什么?进一步引导学生明确下列事实:除去垂直于x轴的直线外,只要知道直线上两个不同点的坐标,由(*)式就可以算出这条直线的斜率.方程y=kx+b的图像是通过点(0,b)且斜率为k的直线.对一次函数确定的直线,它的斜率等于相应函数值的改变量与自变量改变量的比值.直观上可使我们感知到斜率k的值决定了这条直线相对于x轴的倾斜程度.当k=0时,直线平行于x轴或与x轴重合,直线的倾斜角等于0°.当k>0时,直线的倾斜角为锐角;k值增大,直线的倾斜角也随着增大.当k<0时,直线的倾斜角为钝角;k值增大,直线的倾斜角也随着增大.垂直于x轴的直线的倾斜角等于90°.三、解释应用[例题]1.求经过A(-2,0),B(-5,3)两点的直线的斜率k.解:x1=-2,x2=-5,y1=0,y2=3;Δx=-2-(-5)=3,Δy=0-3=-3.故k==-1,即k=-1.2.画出方程3x+6y-8=0的图像.解:由已知方程解出y,得y=这是一次函数的表达式,它的图像是一条直线.当x=0时,y=;当x=2时y=.在坐标平面内描出点A(0,),B(2,),则经过A,B两点的直线即为所求一次方程的图像(如图22-4).3.若三点A(-2,3),B(3,-2),C(,m)共线,求m的值.解:因为A,B,C三点共线,所以kAC=kAB,即,解得m=.思考总结:研究三点共线的常用方法.[练习]1.经过下列两点的直线的斜率是否存在?如果存在,求其斜率.(1)(1,-1),(-3,2).(2)(1,-2),(5,-2).(3)(3,4),(-2,5).(4)(3,0),(0,).2.已知过点P(-2,m)和Q(m,4)的直线的斜率等于1,求m的值.3.过点P(-1,2)的直线l与x轴和y轴分别交于A,B两点.若点P恰为线段AB的中点,求直线l的斜率.四、拓展延伸1.直线的斜率k与直线的倾斜角α之间的关系怎样?2.已知点P1(x1,y1),P2(x2,y2),P1P2的斜率为k,求证:|P1P2|=|x1-x2|=|y1-y2|.3.某城市出租汽车所收租车费y(元)与行驶路程x(km)之间的关系可用下列关系式表示你能用斜率来解释这一实际问题吗?点评这篇案例首先通过实例一次函数的图像和一次函数的解析式的关系,引入了直线的方程和方程的直线的概念,在概念的建立上充分利用了图像的直观性,注重了数形结合的思想,注意了概念的严谨性.接着由直线相对x轴的位置关系引入了直线的倾斜角和斜率的概念,为了用数研究形,又引入了过两点P1(x1,y1),P2(x2,y2)的直线的斜率公式k=,通过师生共同探索明确了倾斜角和斜率是表现直线在坐标系中倾斜程度的.例题与练习的设计由浅入深,有利于巩固所学内容.拓展延伸的设计注意了前瞻性和创新,有利于加深理解所学内容和培养学生探究问题的能力.总之,这篇案例的设计比较好地体现了新课程的理念.
本文标题:高中数学新课程创新教学设计案例50篇 22 直线方程的概念与直线的斜率
链接地址:https://www.777doc.com/doc-476755 .html