您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 爬山算法、模拟退火算法、遗传算法
一.爬山算法(HillClimbing)介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。二.模拟退火(SA,SimulatedAnnealing)思想(跟人一样找不到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的念头)爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。若J(Y(i+1))=J(Y(i))(即移动后得到更优解),则总是接受该移动若J(Y(i+1))J(Y(i))(即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE)=exp(dE/(kT))其中k是一个常数,exp表示自然指数,且dE0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT0,所以P(dE)的函数取值范围是(0,1)。随着温度T的降低,P(dE)会逐渐降低。我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。关于爬山算法与模拟退火,有一个有趣的比喻:(有点意思)爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。模拟退火的伪代码:代码/**J(y):在状态y时的评价函数值*Y(i):表示当前状态*Y(i+1):表示新的状态*r:用于控制降温的快慢*T:系统的温度,系统初始应该要处于一个高温的状态*T_min:温度的下限,若温度T达到T_min,则停止搜索*/while(TT_min){dE=J(Y(i+1))-J(Y(i));if(dE=0)//表达移动后得到更优解,则总是接受移动Y(i+1)=Y(i);//接受从Y(i)到Y(i+1)的移动else{//函数exp(dE/T)的取值范围是(0,1),dE/T越大,则exp(dE/T)也if(exp(dE/T)random(0,1))Y(i+1)=Y(i);//接受从Y(i)到Y(i+1)的移动}T=r*T;//降温退火,0r1。r越大,降温越慢;r越小,降温越快/**若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值*/i++;}模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。如果参数设置得当,模拟退火算法搜索效率比穷举法要高。遗传算法(GA,GeneticAlgorithm),也称进化算法。遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。个体:组成种群的单个生物。基因(Gene):一个遗传因子。染色体(Chromosome):包含一组的基因。生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。简单说来就是:繁殖过程,会发生基因交叉(Crossover),基因突变(Mutation),适应度(Fitness)低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。三.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。遗传算法有3个最基本的操作:选择,交叉,变异。选择:选择一些染色体来产生下一代。一种常用的选择策略是“比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/(f(X1)+f(X2)+……..+f(Xn))。比例选择实现算法就是所谓的“轮盘赌算法”(RouletteWheelSelection),轮盘赌算法的一个简单的实现如下:轮盘赌算法/**按设定的概率,随机选中一个个体*P[i]表示第i个个体被选中的概率*/intRWS(){m=0;r=Random(0,1);//r为0至1的随机数for(i=1;i=N;i++){/*产生的随机数在m~m+P[i]间则认为选中了i*因此i被选中的概率是P[i]*/m=m+P[i];if(r=m)returni;}}交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:交叉前:00000|011100000000|1000011100|000001111110|00101交叉后:00000|000001111110|1000011100|011100000000|00101染色体交叉是以一定的概率发生的,这个概率记为Pc。变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm。例如:变异前:000001110000000010000变异后:000001110000100010000适应度函数(FitnessFunction):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。四.基本遗传算法的伪代码基本遗传算法伪代码/**Pc:交叉发生的概率*Pm:变异发生的概率*M:种群规模*G:终止进化的代数*Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程*/初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Popdo{计算种群Pop中每一个体的适应度F(i)。初始化空种群newPopdo{根据适应度以比例选择算法从种群Pop中选出2个个体if(random(0,1)Pc){对2个个体按交叉概率Pc执行交叉操作}if(random(0,1)Pm){对2个个体按变异概率Pm执行变异操作}将2个新个体加入种群newPop中}until(M个子代被创建)用newPop取代Pop}until(任何染色体得分超过Tf,或繁殖代数超过G)五.基本遗传算法优化下面的方法可优化遗传算法的性能。精英主义(ElitistStrategy)选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。
本文标题:爬山算法、模拟退火算法、遗传算法
链接地址:https://www.777doc.com/doc-4767708 .html