您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 2018年全国普通高等学校招生统一考试文科数学(新课标III卷)
试卷第1页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2018年全国普通高等学校招生统一考试文科数学(新课标III卷)试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.已知集合,,则A.B.C.D.2.A.B.C.D.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD.D4.若,则试卷第2页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B.C.D.5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3B.0.4C.0.6D.0.76.函数的最小正周期为A.B.C.D.7.下列函数中,其图像与函数的图像关于直线对称的是A.B.C.D.8.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A.B.C.D.9.函数的图像大致为A.AB.BC.CD.D10.已知双曲线的离心率为,则点到的渐近线的距离为试卷第3页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B.C.D.11.的内角,,的对边分别为,,.若的面积为,则A.B.C.D.12.设,,,是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D.试卷第4页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题13.已知向量,,.若,则________.14.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.15.若变量满足约束条件则的最大值是________.16.已知函数,,则________.评卷人得分三、解答题17.等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.18.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式试卷第5页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.19.如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.20.已知斜率为的直线与椭圆交于,两点.线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:.21.已知函数.(1)求曲线在点处的切线方程;(2)证明:当时,.22.[选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.23.[选修4—5:不等式选讲]设函数.(1)画出的图像;试卷第6页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)当,,求的最小值.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第1页,总12页参考答案1.C【解析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。2.D【解析】分析:由复数的乘法运算展开即可。详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。3.A【解析】分析:观察图形可得。详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。4.B【解析】分析:由公式可得。详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。5.B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则因为所以故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。6.C本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第2页,总12页【解析】分析:将函数进行化简即可详解:由已知得的最小正周期故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题7.B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。故选项B正确点睛:本题主要考查函数的对称性和函数的图像,属于中档题。8.A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。9.D【解析】分析:由特殊值排除即可本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第3页,总12页详解:当时,,排除A,B.,当时,,排除C故正确答案选D.点睛:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。10.D【解析】分析:由离心率计算出,得到渐近线方程,再由点到直线距离公式计算即可。详解:所以双曲线的渐近线方程为所以点(4,0)到渐近线的距离故选D点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题。11.C【解析】分析:由面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。12.B本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第4页,总12页【解析】分析:判断出当平面时,三棱锥体积最大,然后进行计算可得。详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的重心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。13.【解析】分析:由两向量共线的坐标关系计算即可。本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第5页,总12页详解:由题可得,即故答案为点睛:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。14.分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为:分层抽样。点睛:本题主要考查简单随机抽样,属于基础题。15.3【解析】分析:作出可行域,平移直线可得详解:作出可行域由图可知目标函数在直线与的交点(2,3)处取得最大值3故答案为3.点睛:本题考查线性规划的简单应用,属于基础题。16.【解析】分析:发现可得。详解:本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第6页,总12页,则故答案为:-2点睛:本题主要考查函数的性质,由函数解析式,计算发现和关键,属于中档题。17.(1)或(2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。详解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,.点睛:本题主要考查等比数列的通项公式和前n项和公式,属于基础题。18.(1)第二种生产方式的效率更高.理由见解析(2)超过不超过第一种生产方式155第二种生产方式515(3)有【解析】分析:(1)计算两种生产方式的平均时间即可。(2)计算出中位数,再由茎叶图数据完成列联表。(3)由公式计算出,再与6.635比较可得结果。详解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第7页,总12页少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科%网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过不超过第一种生产方式155第二种生产方式515(3)由于,所以有99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活。19.(1)证明见解析(2)存在,理由见解析【解析】分析:(1)先证,再证,进而完成证明。(2)判断出P为AM中点,
本文标题:2018年全国普通高等学校招生统一考试文科数学(新课标III卷)
链接地址:https://www.777doc.com/doc-4821984 .html