您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 矿井提升机电控系统讲座
1第一章矿井提升机概述第一节提升机电力拖动的特点及对拖动控制装置的要求矿井提升机(又称绞车、卷扬机)是矿井生产的关键设备。提升机电控系统技术性能如何,将直接影响矿井生产的效率及安全。欲掌握提升机电控系统的原理,首先要了解提升机对电控系统的要求,以及各种电气传动方案的特点。矿井提升机为往复运动的生产机械,有正向和反向提升,又有正向和反向下放。对于不同水平的提升,在每次提升循环中,容器的上升或下降的运动距离可能是相同的,也可能是不同的。在每一提升周期都要经过从起动、加速、等速、减速、爬行到停车的运动过程,因此提升机对电控系统一般有下述一些要求。1、要求满足四象限运行设提升机正向提升时,拖动电动机工作在第一象限。而在减速下放时,如果是正力减速,拖动电动机也工作在第一象限,但如果为负力减速,则拖动电动机就工作在第二象限。同样当提升机反向提升时,拖动电动机工作在第三象限。而在减速下放时,如果是正力减速,拖动电动机也工作在第三象限,但如果为负力减速,则拖动电动机就工作在第四象限。因此,提升机的运行必须能满足四象限运行的要求。2、必须平滑调节速度且有精度较高的调节精度提升工艺要求电控系统须能满足运送物料(达到额定速度)、运送人员(可能要求低于额定速度)、运送炸药(2m/s)、检查运行(0.3~1.0m/s)和低速爬行(0.1~0.5m/s)等各种要求,所以要求提升机电控系统必须能平滑连续调节运行速度。对于调速精度,为了在不同负载下的减速段的距离误差尽可能地小,要求提升机的静差率s越小越好(一般在高速下s<1%)。这样可以使爬行段距离尽可能设计得小,来减少低速爬行段的时间,从而缩短提升周期,获得较大的提升能力。3、要求设置准确可靠的速度给定装置提升工艺要求电控系统的加减速度平稳。根据安全规程,对矿井提升机的加、减速度都有一定的限制。对竖井来说,提物时加减速度小于1.2m/s2;提人时加减速度小于0.7m/s2;对斜井,提人时加减速度小于0.5m/s2。限制加速度的目的其一是为了减少人对加减速度的不适反应程度,其二是降低提升机加速时的电流冲击,提高提升设备的使用寿命。实际上矿井提升机系统是一个位置控制系统,提升容器在井筒中的什么位置该加速、等速、减速、爬行都有一定的要求。也就是说,必须根据提升容器在井筒中的位置确定给定的2速度,这就是按行程原则产生速度给定信号。4、要求设置行程显示与行程控制器为了便于提升机司机操作与控制,电控系统应设置可靠的提升容器在井筒中的位置显示装置(俗称深度指示器)。老的深度显示常采用牌坊指针式或圆盘指针式深度显示装置;新的深度显示则采用数字显示。因此,要求提升机电控系统应设置有可靠的位置检测环节,能准确地检测出提升容器在井筒中与减速点开始、爬行、停车及过卷相对应的位置,以便控制提升机能可靠地减速、爬行、停车。为了可靠起见,通常一个位置要设置多只行程开关,以实现冗余控制。5、要求设置完善的故障监视装置提升机对其电控系统的可靠性要求很高。这是因为提升机一旦出现故障,轻则影响生产,重则危及人员生命。电控装置的高可靠性表现在两个方面:一是电控系统质量好,故障少;二是出现故障后应能根据故障性质及时进行保护,并能对故障内容进行记忆和显示,以便能迅速排除故障。通常提升机故障监视内容少则几十项,多则百余项。6、要设置可靠的可调闸控制系统可调闸是一套电气控制的液压调节机械闸系统,是提升安全运行的最后一道保护措施,因此要求闸系统的控制必须安全可靠。可调闸系统的控制通常分为工作制动(常称工作闸,由司机的制动手柄控制)和安全制动(常称为安全闸,由安全回路的继电器或PLC等逻辑控制)。工作制动是在手动操作或在自动操作方式下作为正常停车或定车手段。而安全制动是在系统出现故障时,使运行状态下的提升机快速减速停车、静止状态下不能松闸。安全制动又分为一级制动和二级制动。当提升容器在井筒中而离停车点较远时,若系统出现故障需要紧急制动时应采用二级制动。所谓二级制动,就是制动转矩不是一次全部加到闸盘上,而是分两次,使紧急制动时的减速度比较小,减速度较缓,对机械设备的损伤小,容器在紧急制动后要滑行一段距离才停下来。当提升容器在井筒中离停车点较近时,紧急制动时应采用一级制动。一级制动时制动转矩大、在紧急制动时滑行距离短。目前在先进的提升机上都装备有制动力可调的安全制动装置。第二节提升机的电力拖动方案按提升机对电控系统的要求,常用的提升机电力拖动控制方案有以下几种。1、绕线型异步电动机转子回路串电阻提升系统在这种方案中,绕线型异步电动机转子回路串联附加电阻,利用控制器或磁力站对附加3电阻进行不同的组合,改变其大小,达到调速目的。根据提升机调速性能的不同要求,常用电阻组合有五级、八级和十级等。级数越多,调速越平滑,但仍属于有级调速方式。该方案在加速阶段和低速运行时,大部分能量(转差能量)以热能的形式消耗在转子附加电阻上,系统运行效率低。在负力减速时,一般采用动力制动或低频制动,需要设置辅助电源和定子绕组的二次切换操作。由于受交流接触器容量的限制,目前单机运行功率不超过1000kW,双机不超过2000kW。这种方案的优点是它的结构简单、维护容易、操作方便,是目前我国中小型矿井的主流提升设备。2、双机拖动提升系统双机拖动是将两台同容量或不同容量的电动机通过一定的刚性连接方式,用两台电动机共同拖动一台提升机。与单机拖动相比,其优点是双机拖动可以扩大电动机的使用容量,减小电力拖动系统的转动惯量;可以根据负载情况,确定单机或双机的投入,以提高效率,增加系统可靠件;通过合理调节两机的工作状态,可以得到比单机更加平滑的加减速调节、良好的减速和爬行运行特性。缺点是控制设备多、复杂,维护量大。3、发电机-电动机(G-M)直流拖动可逆提升系统G-M(原称F-D)直流拖动可逆提升系统是指由直流发电机G为直流电动机M提供幅值、极性可变的直流电源。直流电动机为它励方式,励磁电流恒定,通过改变直流发电机输出电压来改变直流电动机的转速。直流发电机由交流同步电动机拖动,通过改变直流发电机励磁电流大小改变输出电压,直流发电机的励磁电流是通过改变电机扩大机的励磁实现控制和调节的。这种方案的优点是可实现无级调速,电动状态与制动状态的切换是快速平滑的,能较好地满足四象限平滑调速的要求,通常采用速度闭环控制调速精度也比较高,无功冲击小,功率因数高,而且还可向电网提供超前无功功率,以改善电网的功率因数。这种方案在20世纪80年代以前的大中型矿井提升机系统中得到较好的应用。缺点是运行效率较低,因为功率变换的效率是同步电动机和直流发电动机两台电动机效率的乘积,通常变流机组的效率只有0.8左右(考虑直流发电动机组平时不停机);占地面积大;噪声大;维护工作量大;耗费金属量大等。因此,目前这种传动形式的矿井提升系统中已被晶闸管-电动机(V-M)直流提升系统所取代。4、晶闸管-电动机(V-M)直流拖动可逆提升系统晶闸管-电动机(V-M)直流拖动可逆提升系统用静止的晶闸管整流器取代旋转变流4器(发电动机组)为直流电动机供电,其效率、控制精度、运行特性及可靠性等均比G-D系统大为提高,从20世纪80年代起就成为直流拖动提升机的主要方式。受电动机换向器和晶闸管变流器容量的限制,电动机的容量通常在4000kW以下。但当拖动容量大于1000kW和提升速度达10m/s以上时,根据我国的运行经验,一般考虑直流拖动。5、交-交变频交流拖动可逆提升系统由于电力电子器件和微电子技术的发展,70年代的研究成果为交流电动机交-交变频调速系统奠定了理论基础,80年代开始在矿井提升机上使用,特别是近年来交-交变频器-低速同步电动机调速在矿井提升系统中得到了较为普遍的应用,而且实现了多微机全数字控制,这种方案控制性能优良、运行效率高、单机容量大、体积小、系统惯量小和维护工作量少,已成为低速大容量矿井提升机传动的首选设备,目前单机传动功率已经达到5000~8000KW。在这种系统中通常采用的是将同步电动机转子外装,与摩擦式提升机的滚筒融合为一体,形成具有体积更小、重量更轻的机电一体化方案,可以明显地降低投资成本。但系统复杂,用到的新技术、新器件多,对运行现场的管理和维护技术人员的技术水平要求较高。5第二章提升机直流调速电力拖动与控制直流拖动在矿井提升中得到了广泛的应用,主要有直流发动机-直流电动机系统(简称G-M)系统和晶闸管变流器-直流电动机系统(简称V-M系统)两种类型,前者已逐渐被淘汰,因此本节仅以V-M提升系统为例作介绍。第一节直流电动机调速原理一、他励直流电动机的机械特性他励直流电动机的机械特性是指在励磁电流fI(或磁通)保持一定(通常为额定值)的情况下,电动机的电枢电压dU、转速n与转矩T(或电枢电流aI)之间的关系。由《电动机学》可知,直流电动机稳定运行时的基本方程为:电压方程nCRIERIUeadadd反电势方程nCEe转矩方程dMICT运动方程TnTCCRCUCRIUnMeaedeadd02(机械特性)式中n-转速;0n-理想空载转速;-机械特性的斜率;dU-电枢电压;dI-电枢电流;aR-电枢回路总电阻;eC-电动势常数;-电动机每级磁通;MC-转矩常数;T-电磁转矩,E-反电势。当电动机在额定参数下工作时,直流电动机稳定运行时的基本方程可以表示为TCCRCUnNMeaNeN2其机械特性称为固有机械特性。如图1所示。00nnNnNTT图1他励直流电动机固有机械特性6二、调速方法从上式可以看出,当改变电枢电压dU、电枢回路电阻aR和励磁磁通时,都可以改变电动机的转速,因此直流电动机的调速通常有以下三种方法,即改变电枢电压dU调速、改变电枢回路电阻aR调速和改变磁通调速,而此时得到的机械特性称为人工机械特性。对于矿井直流提升系统,通常采用改变电枢电压dU的调速方法。第二节V-M直流拖动基本方案不论是交流还是直流提升,都要求提升机能在四象限运行。由上式可知,要改变直流电动机电磁转矩的大小,通常采用调节电枢电流的方案;那么要改变直流电动机转矩的极性,可采用改变电枢电流的极性或者改变直流他励电动机励磁电流的极性(即励磁磁通的极性)。目前矿井直流提升常用的方案基本上为磁场换向可逆逻辑无环流系统。在磁场换向系统中,电枢回路采用一套整流装置,而励磁回路则采用两套整流装置反并联连接,其主电路结构如图图2所示。M~~1V2V3V图2磁场换向V-M直流拖动系统主回路接线图电动机转矩极性的改变是靠改变励磁电流的的极性实现的,如变流器1V工作时2V关闭为正向提升运行,反之即为反向运行。此外,在换向过程中,励磁电流由额定值下降到零时,如电枢电流依然存在,电动机将产生“飞车”现象。为了避免这种情况,通常在励磁电流下降到接近于零时,控制电枢电流也为零。电动机励磁回路的负载是大电感,时间常数大,电流的建立较慢,所以较之电枢换向系统快速性稍差。但矿井提升机对快速性的要求不是太高,也就是说并不要求转矩变化太快。因为急剧的转矩变化会造成过大的机械冲击,而且由于钢丝绳的弹性连接往往会引起剧烈振7荡。当然,转矩的变化也不可太慢,否则会由于位能负载的作用造成提升机失控下坠,比较合适的转矩反向时间约在0.6~1.2s之间。为了满足这一要求,常采用“强迫励磁”的方法,即在建立磁场或反向过程中加3~5倍的励磁电压。由于磁场换向电枢回路用一套变流装置,虽然励磁回路用两套,但由于励磁功率通常只占电动机额定功率的3%~5%,显然磁场换向所需变流装置的容量要小得多,考虑到经济上的这一优越性,目前这种方案在大容量矿井提升机直流电力拖动中得到广泛应用。一、磁场换向的V-M直流电力拖动机械特性和运转状态1、系统机械特性系统开环机械特性和运转状态如图3所示。M11221201V逆变2V整流正向电动反向电动1V整流3V整流反向制动2V2V1V1VnT正向制动1V整流2V整流12()1211221V逆变3V整流3VdIfIMdIfI3VM2V1V3VdIfIM2V1V3VdIfI12()
本文标题:矿井提升机电控系统讲座
链接地址:https://www.777doc.com/doc-4823778 .html