您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 线性代数第一章习题答案
1习题1.11.11.11.11.计算下列二阶行列式.(1)5324;(2)ααααcossinsincos.解(1)146205324=−=;(2)ααααcossinsincosαα22sincos−=.2.计算下列三阶行列式.(1)501721332−−;(2)00000dcba;(3)222111cbacba;(4)cbabaacbabaacba++++++232.解(1)原式62072)5(1)3(12317)3(301)5(22−=××−−××−−××−××−+××+−××=(2)原式00000000000=⋅⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅+⋅⋅=dcbacadb;(3)原式))()((222222bcacabcbacbacaabbc−−−=−−−++=;(4)原式)()()2()23)((baaccbaabbaaccbabaa+−++++++++=3)23())(2(acbaabcbabaa=++−+++−.3.用行列式解下列方程组.(1)⎩⎨⎧=+=+35324yxyx;(2)⎪⎩⎪⎨⎧=++=++=++82683321321321xxxxxxxxx;(3)⎩⎨⎧=−=+0231322121xxxx;(4)⎪⎩⎪⎨⎧=−+=+=−−031231232132321xxxxxxxx.解(1)75341−==D,253421−==D,333212−==D所以721==DDx,732==DDy.(2)2121111113−==D,21281161181−==D,41811611832−==D,68216118133−==D;所以111==DDx,222==DDx,333==DDx.(3)132332−=−=D,220311−=−=D,303122−==D所以1321==DDx,1332==DDy.(4)8113230121−=−−−=D,81102311211−=−−−=D,281032101112=−−=D;20131301213=−=D所以111==DDx,122−==DDx,333==DDx.4.已知xxxxxxf21112)(−−−=,求)(xf的展开式.解xxxxxxf21112)(−−−=22)(11)(1)(111)(2)()(2⋅⋅−⋅−⋅−⋅−⋅−−⋅⋅+−⋅⋅−+⋅−⋅=xxxxxxxxxxxxx23223+−−=5.设ba,,,,为实数,问ba,,,,为何值时,行列式010100=−−−abba.解01010022=−−=−−−baabba0,022==⇒−=⇒baba.习题1.21.21.21.21.求下列各排列的逆序数.(1)1527364;(2)624513;(3)435689712;(4))2(42)12(31nnLL−.解(1)逆序数为14;62402001527364it↓↓↓↓↓↓↓ (2)逆序数为5;031010624513it↓↓↓↓↓↓ (3)逆序数为19;554310010435689712it↓↓↓↓↓↓↓↓↓ (4)逆序数为2)1(−nn:302122210000421231↓↓−−−↓↓↓↓↓−nnnntniLLLL 2.在由9,8,7,6,5,4,3,2,1组成的下述排列中,确定ji,的值,使得(1)9467215ji为奇排列;(2)4153972ji为偶排列.解(1)ji,为分别3和8;若8,3==ji,则93411)946378215(=+++=τ,为奇排列;若3,8==ji,则1234311)946873215(=++++=τ,为偶排列;(2)ji,为分别6和8;若8,6==ji,则205135231)397261584(=++++++=τ,为偶排列;若6,8==ji,则215335131)397281564(=++++++=τ,为奇排列;3.在五阶行列式)det(ija=DDDD展开式中,下列各项应取什么符号?为什么?(1)5145342213aaaaa;(2)2544133251aaaaa;(3)2344153251aaaaa;(4)4512345321aaaaa.解(1)因5)32451(=τ,所以前面带“-”号;(2)因7)53142(=τ,所以前面带“-”号;(3)因10)12543()53142(=+ττ,所以前面带“+”号;(4)因7)13425()25314(=+ττ,所以前面带“-”号.4.下列乘积中,那些可以构成相应阶数的行列式的项?为什么?(1)12432134aaaa;(2)14342312aaaa;(3)5514233241aaaaa;(4)5512233241aaaaa.解(1)可以,由于该项的四个元素乘积分别位于不同的行不同的列;(2)不可以,由于14342312aaaa中的1434aa都位于第四列,所以不是四阶行列式的项;(3)可以,由于该项的五个元素乘积分别位于不同的行不同的列;(4)不可以,由于5512233241aaaaa中没有位于第四列的元素。5.六阶行列式展开式中含有因子23a的乘积项共有多少项?为什么?解!5项,因为六阶行列式中每项是六个元素相乘,并且六个元素取自不同行不同列,23a是取自第二行第三列的元素,所以其余五行从第一、二、四、五、六列里选取出其余的五个元素,共有!5种取法。6.用行列式定义计算下列行列式.(1)0001100000100100;(2)dcba000000000000.解(1)在展开式43214321)1(ppppaaaa∑−τ中,不为0的项取自于113=a,122=a,134=a,141=a,而4)3241(=τ,所以行列式值为11111)1(4=×××−.(2)在展开式43214321)1(ppppaaaa∑−τ中,不为0的项取自于aa=11,ba=23,ca=32,da=44,而1)1324(=τ,所以行列式值为abcdabcd−=−1)1(.7.在函数xxxxxxxf412412102132)(=的展开式中,4x的系数是什么?解)(xf中含x因子的元素有xa211=,xa=21,xa=22,xa=33,xa=41,xa444=,因此,含有x因子的元素iija的列标只能取11=j,212,,,,=j,33=j,414,,,,=j.于是含4x的项中元素列下标只能取11=j,22=j,33=j,44=j,相应的4个元素列标排列只有一个自然顺序排列1234,故含4x的项为4044332211(1234)842)1()1(xxxxxaaaa=⋅⋅⋅−=−τ,故)(xf中4x的系数为8.4习题1.31.31.31.31.判定下列等式或命题是否正确,并说明理由.(1)2221112221118222cbacbacbacbacbacba=;(2)222111222111cbackcbkbakackbkakcbacbacba+++=;(3)如果n(1n)阶行列式的值等于零,则行列式中必有两行元素对应成比例;(4)如果n(1n)阶行列式的值等于零,则行列式中必有一行元素全为零;(5)333222111333222111333332222211111ecaecaecadbadbadbaedcbaedcbaedcba+=++++++.解(1)不正确,提取公因子是某一行(列)的元素有公因子;(2)不正确,222111222222111222111cbacbacbakcbackbkakckbkakcbacbackbkakcbackcbkbakackbkak=+=+++;(3)不正确,0111210321=,但是没有两行元素对应成比例;(4)不正确,例子同上;(5)不正确,333322221111333322221111333332222211111edcaedcaedcaedbaedbaedbaedcbaedcbaedcba+++++++=++++++333222111333222111333222111333222111ecaecaecadcadcadcaebaebaebadbadbadba+++=.2.设0333231232221131211≠==aaaaaaaaaaDDDD,据此计算下列行列式.(1)131211232221333231aaaaaaaaa;(2)333231232221131211555aaaaaaaaa;(3)333231312322212113121111254254254aaaaaaaaaaaa−−−;(4)323233312222232112121311273227322732aaaaaaaaaaaa−−−−−−.5解(1)aaaaaaaaaarraaaaaaaaa−=−↔33323123222113121131131211232221333231;(2)aaaaaaaaaakcaaaaaaaaa55)0(55553332312322211312113333231232221131211=≠÷,(3)333231232221131211333131232121131111333231312322212113121111242424545454254254254aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa−=−−−aaaaaaaaaaaaaaaaaaaa880820333231232221131211333131232121131111−=−=−=.(4)32333122232112131132323233312222232112121311232232232c27c25732257322732aaaaaaaaaaaaaaaaaaaaa−−−−−−−−−−aaaaaaaaaaccaaaaaaaaaccc121212)2(3233323123222113121132323331222321121311321=↔−÷÷÷.3.用行列式性质计算下列行列式.(1)111210321;(2);efcfbfdecdbdaeacab−−−;(3)yxyxxyxyyxyx+++;(4)9876876554324321;(5)2605232112131412−.解(1)0111210000111210321321=−−rrr;(2)0202001321ceecbadfrrrrecbecbecbadfefcfbfdecdbdaeacab−++−−−=−−−abcdefececbadfrr420002032=−−↔;(3)yxyxxyxyxyxyyxcccyxyxxyxyyxyx222222321++++++++++xyyyxyxyyxrrrr−−−++−−00)(2122362)22()()22(yyxxyxyx+−−+=)(2))((23322yxyxxyyx+−=−−+=;(4)098768765131197131197rrrr98768765543243213241=++(5)000002321121314122605232112131412214=−−−−rrr.4.把下列行列式化为上三角行列式,并计算其值.(1)3351110243152113−−−−−−;(2)107825513315271391−−−−−−−;(3)3214214314324321;(4)7222227222227222227222227.解(1)2113110243153351335111024315211341−−−−−−−↔−−−−−−rr11101605510019182403351325141312−−−−−−−−−+rrrrrr111016019182401120335155323−−−−−−↔÷rrr2000320011203351533200760011203351581243432423−−−−−↔+−−−−−−+rrrrrrrr402)2(215=×−×××−=;(2)78130210017251307139121078255133152713911224413−−−−−−++−−−−−−−−−rrrrrrr31224000210017251307139117324
本文标题:线性代数第一章习题答案
链接地址:https://www.777doc.com/doc-4838159 .html