您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 四年级奥数详解答案第3讲数阵图
四年级奥数详解答案第3讲第三讲数阵图一、知识概要1.数阵图就是把一些数字填入图形的某种位置上,并使数字满足一定的条件。2.数阵图的种类,大致分为三种:①封闭型数阵图;②开放型数阵图;③复合型数阵图3.解数阵图的一般方法:(1)分析隐含的数量关系和数字的位置关系,以特殊的位置为突破口,一般选用使用次数多的数作为关健数。(2)依据图中条件,建立所求的和与关健数的关系式,并通过讨论最大值与最小值,以及试验的办法确定关键数的数值及相等的和。(3)对其他部位上的数字一般都是作尝试选填,直至符合题为止二、典型例题精讲1.把1~6这6个数分别填在图中的○内,使每多边上三个○内的数字和相等。分析指导:2165432121+(a+b+c)=(a+d+b)+(b+f+c)+(a+e+c)a+d+b=b+f+c=a+e+c,且设a+d+b=k有:21+(a+b+c)=3k当a+b+c为最小值,即1+2+3=6时,k=9当a+b+c为最大值,即6+5+4=15时,k=12这样就可以确定,三角形每边上的三个○内的数字和在9~12之间解:(1)当k=9时,a+b+c=6,令a=1,b=2,c=3则:d=9-(2+1)=6e=9-1-3=5f=9-2-3=4其结果如下图所示:(2)当k=10时,a+b+c=9,则:a.b.c的取值有三种可能:①a=1,b=2,c=6②a=1,b=3,c=5③a=2,b=3,c=4-----①种情况,a=1,b=2,c=6,则d=10-1-2=7(不合题意,舍去)-----②种情况,a=1,b=3,c=5,则d=10-1-3=6,e=10-1-5=4;f=10-3-5=2,所以结果如图所示。------③种情况,a=2,b=3,c=4,则d=10-2-3=5,e=10-2-4=6,f=10-3-4=3,与b=3重复,不合题意,舍去。(3)当k=11时,则a+b+c=12,这时a、b、c的取值,又有如下几种情况:①a=1,b=5,c=6,d=11-1-1=5与b=5矛盾,舍去。②a=2,b=4,c=6,d=11-2-4=5,e=11-8=3,f=11-10=1结果如图所示。③a=3,b=4,c=5,d=11-7=4,与b=4矛盾,舍去。(4)当k=12时,则a+b+c=15,这时a、b、c的取值为a=4,b=5,c=6,d=12-9=3,e=12-11=1,f=12-10=2结果如图所示:综合以上分析,本题有四种不同的填法。2.1~12中的部分数字已填入图中,请将其余的数字补充填入,使得每条直线上的四个数的和都相等。分析指导:①求出1~12的和。每个○内的数都重复计算了一次,六条直线数字之和=1~12的和的2倍。②求出每条直线上的数字之和。③中间数尝试几次便可试出。解:①1~12的和:(12+1)×12÷2=78②每条直线数字之和:78×2÷6=156÷6=26b+a=26-10-1=15,则a和b的取值为只能是8和7,这样问题就解决了。结果如图所示:3.将1~10这十个数字填入图中的10个○内,使每个四边形四个顶点上各数的和等于24。分析指导:这个数的突破口是:题中有3个“正方形”,两个位置上的数字被重复使用。三个“正方形”的顶点上各数的总和应是:24×3=72,而1~10这十个数字的总和是:(10+1)×10÷2=55,所以中间重复使用的两个数之和应是:72-55=17,重复使用的两个数的取值范围有10和7;9和8两种情况,本题可能有两种答案,先试第一种:当中间数为10和7时,有:10+7+1+6=24,10+9+2+3=2,7+8+4+5=2,符合题意,结果如图所示:再试第二种:当中间数为9和8时,有:9+8+4+3=24,10+8+5+1=249+7+6+2=24,符合题意,结果如图所示综合上述分析,此题有2种填法。4.把1~8各数填入图中的○内,使每个面上四个数的和等于18。分析指导:这是个立体图形,四个顶点上的数字被重复使用,但没有“关键数”,我们可以“1”这个特殊数填入任意一个位置,则和“1”组成18的情况有:1+2+7+8=18,1+3+6+8=18,1+4+5+8=18,1+7+6+4=18先将上述任意一组的四个数放入其中一个面的四个圆圈(大、小数间开),以其为基础进行调整,可得到答案。结果如图所示:5.20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入图中的○内,(“3”已填好),使得箭头线连接的四数之和都相等。分析指导:要填的七个数是:1、5、7、11、13、17、19。这七个数之和是:1+5+7+11+13+17+19=73。最后一个○里的数是关键数。因为两头一去掉,中间只有6个字,(73-1)÷3=24,也就是说,中间每组两数之和是24。当最后一个○内填1时,则中间六个数为:5和19,7和17,11和13,结果如图所示:当最后一个○内填5时,则中间六个数的和为73-5=68,不能被3整除,不合,舍去。当最后一个○内填7时,则中间六个数的和为73-7=66,66÷3=22,22-19=3,不合,舍去。当最后一个○内填11时,则中间六个数之和为73-11=62,不能被3除,不合舍去。当最后一个○内填13时,则73-13=60,60÷3=20,20-17=3,超出可选范围,不合,舍去。当最后一个○内填17时,则73-17=56,不能被3整除,不合,舍去。当最后一个○内填19时,则73-19=54,54÷3=18,18-17=1,18-13=5,18-11=7。符合题意,结果如图所示:综合上面分析,本题有两种填法。6.将1~12这十二个数分别填入图中的○内,使每条线上五个数的和相等,并且两个六边形六个顶点上○内的数的和也相等。分析指导:1.先考虑每条线上五个数和相等2.再考虑六个顶点上的数的和相等。1.1~12的和为:(12+1)×12÷2=78每行四个○内的数之和应该是78÷3=26,26÷2=13则为两个○内数之和,两数之和为13的情况有:1和12,2和11,3和10,5和8,6和7如图所示:2.为满足六个顶点数字之和相等,其数字之和应该是26+13=39。将右图适当调整可得。结果如图所示。51111913177517131571119三、练习巩固与拓展1.将4、5、6、7、8、9六个数,填在图中的“○”里,使每条线上的三个数的和都是18。2.图中有10个小三角形,4个大三角形,请把0~9填入小三角形内,使4个大三角形内的数字之和相等。3.把1-8个数分别填入图中的○里,使四边形每条边上三个数的和都等于12.4.把10~19这十个数分别填入右图中的○内,使三角形每条边上四个数的和相等。5.在下图中各圆的空含部分填上1、2、4、6,使每个圆中4个数的和都是156.将数字1~7填入图中圆锥的7个小圆圈内,使三条线段上的3个数之和,两圆周上3个数之和均相等。7.将1-7这七个数字填入图中的○内,使每条线上三个数的和相等。8.在图中的几个○内各填一个数,使每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么x=()9.将1、3、5、7…19,这十个数分别填入图中的○内,使每条线段上四个○内数的和相等,每个三角形三个顶点上的数的和也相等。10.将1~8这八个数字分别填入图中,使每个圆圈上五个数的和分别为20、21、22。第三讲练习巩固与拓展答案1.每条线三个数的和是18,三条线九个数的和18×3=54,但三个顶点上的数已重复计算,所以应用54(4+5+6+7+8+9)的和,即54-39=15这个“15”就是三个顶点上的数的和.2.解:①中心那个特殊位置放“0”②0~9的和为:(9+0)×10÷2=4545÷3=15即每个三角形里的数的和为15。下列三组数的和为15:a1、6、8;b3、7、5;c2、4、93.解:1~8的和是:(8+1)×8÷2=36而四条边的和则为12×4=48四角上的四个数之和应为:48-36=1212=1+2+3+6四角上要满足填1、2、3、64.(提示:三个顶点上先填12、13、17这三个数。)5.已知三个圆中的两数之和分别为8、12、10;而圆中的四数之和又为15。15-8=715-12=315-10=5为了不出现重复现象取7=1+6、3=1+2、5=1+4、“1”是共有的数,填入中心位置。6.设顶点数为a,则有:2×(1+2+…+7)+a=56+a(7个圆圈的数字之和)。由于线段和圆圈的数字和相等,因而(56+a)应能被5整除,那么,a只能为4,56+4=6060÷5=12即三个数的和为12。12-4=8(两数之和)两数之和等于8的情形有:3+5,2+6,1+7。7.此题要先求中间数。设中间数为x,则有三条线段上的数字之和为:(1+2+3+…+7)+2x=28+2x(28+2x)应是3的整数倍x的取值范围是:1、4、7这样就出现三种情形。(1)当x=1时,三数之和为(28+2×1)÷3=30÷3=10(2)当x=4时,三数之和为(28+2×4)÷3=36÷3=12(3)当x=7时,三数之和为(28+2×7)÷3=42÷3=148.x=99.10.
本文标题:四年级奥数详解答案第3讲数阵图
链接地址:https://www.777doc.com/doc-4848814 .html