您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 小学数学六年级下册第二单元教材分析-圆柱与圆锥
六下第二单元教材分析圆柱与圆锥[2009-2-1716:58:00|By:xxsx]0推荐一、教学内容。第二单元《圆柱与圆锥》属于《空间与图形》版块中图形的计算。包括:圆柱认识、圆柱的表面积、圆柱的体积、圆锥的认识、圆锥的体积。二、教学目标。1、单元教学目标:(1)认识圆柱和圆锥,掌握他们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。(2)探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。(3)通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。2、教学重点:(1)圆柱的表面积、体积的计算。(2)圆锥而体积的计算。3、教学难点:(1)圆柱的表面积和体积的计算公式的推导(2)圆锥体积的计算公式的推导。三、学生已有的知识、经验基础。本单元是在学生已经掌握了长方体、正方体、圆的有关知识的基础上编排的,是小学阶段学习几何知识的最后一部分内容。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体,这些都是本单元知识学习的重要基础。学习圆柱和圆锥的知识扩大了学生认识形体的范围,增加了形体的知识,促进空间观念的进一步发展。四、编排形式、内容结构。(见PPT)全单元编排了9道例题、4个练习以及整理和复习。例1、例2、例3、例4,练习二,圆柱的认识及圆柱的侧面积和表面积;例5、例6,练习三,圆柱的体积;例1、例2、例3,练习四,圆锥的认识及圆锥的体积;“整理和复习”,练习五,综合应用全单元的知识,“数学游戏”动手操作、探索实践。五、编排特点和调整修改圆柱与圆锥是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,但是,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。1、加强了所学知识与现实生活的联系。对圆柱、圆锥的认识,教材均通过列举大量现实生活中具有圆柱、圆椎体特征的实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。当学生认识它们的主要特征后,又让学生从生活中寻找更多的具有如此特征的实物,从而加强所学知识与现实生活的联系,加深了学生对圆柱、圆锥的认识,进一步感受几何知识在生活中的广泛应用。2、加强了对图形特征、求表面积和体积方法的探索过程。在以往这些部分内容的编排更侧重于理解和掌握图形的特征和表面积、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。实验教材加强了动手实践、自主探索,让学生经历知识的形成过程,获得更多的自主探索和空间观念的训练机会。例如,圆柱的特征,是让学生动手实验、自主探索得到的。在教学圆柱展开图的特征时,教材从让学生自主探索“圆柱的侧面展开后是什么形状?”开始,让学生动手操作,剪一剪并展开观察,再把展开得到的长方形重新包上,探索并发现此长方形的长等于圆柱底面的周长,宽等于圆柱的高。这就为进一步探索圆柱表面积的计算方法打下基础,也加深了学生对圆柱特征的认识,锻炼了学生空间想像的能力。3、加强了学生在操作中对空间与图形问题的思考。在编排圆柱和圆锥的认识时,增加了用长方形(或三角形)的硬纸贴在木棒上快速转动转出圆柱(或圆锥)的活动。此项活动不仅可以激发学生的学习兴趣,了解平面图形与立体图形之间的联系和转换关系;同时可以使学生在操作、观察、想像、推理过程中,进一步认识圆柱、圆锥的特征,发展空间观念。六、课时安排与教学畅想。本单元建议9课时左右完成。课时安排建议:圆柱的认识例1、例2一课时;圆柱的表面积例3、例4一课时;练习一课时;圆柱的体积例5、例6一课时;练习一课时;圆锥的认识例1一课时;圆锥的体积例2、例3一课时;练习一课时;整理和复习一课时。○圆柱包括三部分内容:圆柱的认识、圆柱的表面积、圆柱的体积。安排了6个例题。圆柱的认识:首先从生活中的圆柱实物或模型入手,引导学生认识圆柱的特征及各个部分的名称,让学生经历由“形象——表象——抽象的过程。然后通过观察交流,抽象圆柱的特征。例1的教学,重点在认识圆柱的特征。教学中应加强直观演示并让学生通过观察和操作,即看一看,摸一摸,比一比认识圆柱的底面、侧面和高,发现他们的特征;之后安排这样一个有趣的操作活动,使学生从旋转的角度认识圆柱,即绕长方形的一条边快速旋转,形成圆柱形状,感受并沟通从平面图形与立体图形的转换。让学生快速转动长方形纸片活动,只要求学生操作、感知,不必做更深入的讲解。本节课的难点应放在例2,即认识圆柱的侧面展开图。指导展开圆柱侧面的方法,理解侧面展开后的形状。教学时要放手让学生经历探索知识的过程,再一次沟通从立体图形再到平面图形的转换。可这样设计教学过程:(1)先让学生摸一摸圆柱形实物,圆柱侧面在哪里,猜想一下侧面展开后是什么形状。(2)接着让学生动手操作再剪开侧面,再展开,看有什么发现。学生准备的圆柱体各不相同,在剪开的过程中并不是千篇一律,故可能会出现:圆柱的侧面展开后是一个长方形或是平行四边形,对于这些操作结果教师都应给予肯定和鼓励,并让学生说说是怎样剪的,以培养学生从不同角度思考问题的习惯。(3)最后再让学生观察思考“圆柱侧面展开得到的长方形的长、宽与圆柱的什么有关?”让学生经过分析、比较,概括出:圆柱展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。最后让学生思考:“什么情况下圆柱侧面展开图是正方形?”这样学生通过在亲历立体图形与其展开图之间的转化,逐步建立了立体图形与平面图形的联系,进一步发展了空间观念。“做一做”让学生制作圆柱,加深对圆柱特征的认识,也为后面学习计算圆柱的表面积做准备。圆柱的表面积2、理解圆柱表面积的概念,探索表面积的计算方法。因为学生已有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。所以对于圆柱表面积的理解并不困难。例3的教学让学生将课前做好的圆柱模型展开,观察展开后的形状,并在展开后的图形中标明圆柱的底面和侧面,以便于把展开后的每个面与展开前的位置对应起来,得出:圆柱的表面积=圆柱的侧面积+两个底面的面积。圆柱的侧面积=底面周长×高。例4的教学是关于圆形物体表面积的计算,关于例4的教学,我个人认为要注意这样几点:①圆柱形物体在计算表面积之前一定要先判断此圆柱体是几个面,什么面,再来进行计算;②圆柱形物体表面积的计算的步骤较多,学生在熟练应用公式计算之前,最好是分步进行计算,即先求出侧面积和底面积,再求出表面积。注意每一步的运算结果要写上正确的计量单位;③圆柱表面积计算结果再取近似值时,一定要注意不可乱用“四舍五入法”取近似值,而是用进一法取近似值,。完成例4后,,做一做是一道计算圆柱表面积的基本题型可让学生独立完成,订正后后可与例4进行比较,找出两题不同之处,同样都是求圆柱体的表面积,为什么这题要求侧面和两个底面的面积之和,而例4求侧面和一个底面的面积之和?使学生明确在解决实际问题时,求表面积要根据具体情况确定计算哪些面的面积之和。温馨提示:(1)练习二中1--4题配圆柱的认识来完成,5--10题配圆柱的表面积课时完成,最后一课时完成剩下练习,也可补充相应拓展练习。(2)在解答“求圆柱表面积”的有关练习,要注意弄清题中要求的是哪部分的面积,一般分为三种情况:计算一个侧面和两个底面如饼干盒、茶叶盒;计算一个侧面和一个底面,如金鱼缸、无盖水桶;只计算侧面积,如烟囱、压路机。所以在解答这些问题时具体情况具体分析,进一步培养学生根据实际情况灵活运用公式计算表面积的能力。(3)练习二第4题,考查学生对圆柱侧面的长与圆柱底面周长的关系的掌握情况。学生判断后,应让学生谈谈理由。还可以让学生想一想,如果把第2、3个图形围起来,会出现什么情况?加强对圆柱侧面的长与圆柱底面周长的关系的理解,发展空间观念。(4)练习二第11题,要特别关注,是让学生初步了解圆柱的各种截面的特点,三种情况很有代表性,如沿圆柱的底面截,则会出现与底面相等的圆形,若沿底面直径截,可能会出现长方形或正方形,练习处理过程中,有条件的话,教师可以进行适当的演示,对于一部分能力较强的学生要追问:“观察截后或剪完得到的图形与原图形有何联系?”为后面解答较复杂的关于表面积及体积的计算奠定基础。可在第三节练习课或在后面整理和复习中补充类似练习,如:“一根圆柱形的火腿肠,底面直径3厘米,高15厘米。把它沿着上下底面圆心的连线切开后,它的表面积增加了多少?如果把它从正中横切成两个相同的小圆柱,它的表面积增加了多少?圆柱的体积3、应用转化策略,教学圆柱的体积计算公式。例5教学圆柱体积公式的推导,例6是利用圆柱体积计算解决问题。(1)例5,渗透了转化的思想。首先从回顾旧知(长方体、正方体的体积计算)入手,引出圆柱体积的计算问题,并提出圆柱能否转化成已学过的立体图形来计算体积。接着通过教具演示图说明把圆柱的底面分成若干个相等的扇形,把圆柱切开,拼成一个近似的长方体。在这个教学环节中,教师一定不要忽略操作与直观演示,也可借助多媒体。然后引导观察和推理,得出这个长方体的底面积等于圆柱的底面积S,高就是圆柱的高h,并由长方体的体积计算公式得出圆柱的体积计算公式为V=Sh。(2)例6之前,安排了已知圆柱底面半径r和高h,将圆柱体积计算公式V=Sh改写为V=的内容。(3)例6,创设了一个生活化的问题情境“这个杯子能不能装下这袋牛奶?”解决这个问题,先要计算杯子的容积,使学生明白圆柱形容器容积的计算方法,跟圆柱体积的计算方法相同,可直接利用V=计算。温馨提示:(1)练习三中1、2、3、9题配第一课时,剩下练习题配合第二课时,第二课时中还应设计一些有变化,有拓展层次的练习。(2)练习三第10题,这道题对于学生来说有一定的困难,,教师可通过这道题的联系,使学生建立一种利用条件转换解决问题的策略。学生可根据“两个圆柱的底面积相等”这一条件,先求出一个圆柱的底面积,再利用这个底面积求出另一个圆柱的体积;另外也可根据“两个圆柱的底面积相等”这一条件列方程解答。(3)此题可让学生观察,使之明确钢管的体积=大圆柱的体积—小圆柱的体积,也可以钢管的体积=用横截面面积(环形的面积)×长(圆柱的高)(4)本节练习课中还可补充下列选择练习:①一只铁皮水桶能装水多少升是求水桶的();做一只圆柱形的油桶,至少需要多少铁皮,失球有痛的();做一节圆柱形的铁皮通风管。要用多少铁皮是求通风管的();求一段圆柱形的钢条有多少立方米是求它的()。(侧面积、表面积、容积、体积)圆锥包括圆锥的认识和体积两部分内容。1.圆锥的认识。内容主要包括:圆锥的特征及各部分名称,其编排与圆柱的认识类似,教学中可参考圆柱的教学,但教师可放手学生自己探究发现总结。教学畅想:1、本节课中圆锥高的认识是教学难点,教学时可联系圆柱的高进行:“圆柱两底面之间的距离叫做圆柱的高。那么圆锥的高指什么?”学生可能会出现两种不同的说法“从圆锥的顶点到底面圆心的距离是圆锥的高”和“从圆锥的顶点到底面圆周上的一点的距离是圆锥的高”,教师可让学生进行小组辩论、交流,准确认识圆锥的高,并区分高和母线(母线的名称不要给学生介绍)。为进一步认识圆锥的高,可以通过实际测量或利用课件介绍测量圆锥高的方法。2、做转动三角形纸片活动时,可先让学生猜测:“一个长方形通过旋转,可以形成一个圆柱,那么你们知道绕一个三角形的直角边旋转,会形成什么形状?”3、认识圆锥后,可以将圆锥和圆柱从组成和特征角度进行对比,使学生加深对这两种图形特征的整体的认识。圆锥的体积例2教学圆锥体积公式的推导,例3是圆锥体积公式的应用。例2,教材按“引出问题——联想、猜测——实验探究——导出公式”四个层次编排。(1)引出问题。首先提出“你有办法知道这个铅锤的体积吗?”让学生讨论,讨论结果是:可以用排水法,但这种方法太麻烦。从而产生推导圆锥体积公式的动机。(2)联想、猜测。学生讨论,回想会计算哪些图形的体积,思考圆锥的体积和哪种图形的体积有关?从而将圆锥和圆柱的体积联系起来。(3)实验探究。首先让学生准备好等底、等高的圆锥和圆柱,通过圆柱圆锥相互倒水或沙子的实验,探究
本文标题:小学数学六年级下册第二单元教材分析-圆柱与圆锥
链接地址:https://www.777doc.com/doc-4860360 .html