您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 薪酬管理 > 推理与证明题型全归纳(AB卷)
第五节合情推理与演绎推理1.合情推理(1)归纳推理:①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②特点:是由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②特点:类比推理是由特殊到特殊的推理.2.演绎推理(1)模式:三段论①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)特点:演绎推理是由一般到特殊的推理.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.[试一试]1.数列2,5,11,20,x,47,…中的x等于()A.28B.32C.33D.27解析:选B由5-2=3,11-5=6,20-11=9.则x-20=12,因此x=32.2.“因为指数函数y=ax是增函数(大前提),而y=13x是指数函数(小前提),所以y=13x是增函数(结论)”,上面推理的错误是()A.大前提错导致结论错2B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提都导致结论错解析:选Ay=ax是增函数这个大前提是错误的,从而导致结论错误.归纳推理与类比推理的步骤(1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想);③检验猜想.实验、观察→概括、推广→猜测一般性结论(2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);③检验猜想.观察、比较→联想、类推→猜想新结论[练一练]在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V1V2=13S1h113S2h2=S1S2·h1h2=14×12=18.答案:1∶8考点一类比推理1.给出下面类比推理(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“a,c∈C,则a-c=0⇒a=c”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数为()3A.1B.2C.3D.4解析:选B类比结论正确的有①②.2.在平面几何里,有“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=12(a+b+c)r”,拓展到空间,类比上述结论,“若四面体ABCD的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,则四面体的体积为____________”.解析:三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V四面体ABCD=13(S1+S2+S3+S4)r.答案:V四面体ABCD=13(S1+S2+S3+S4)r[类题通法]类比推理的分类类比推理的应用一般为类比定义、类比性质和类比方法(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.考点二归纳推理[典例](1)(2013·陕西高考)观察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5…照此规律,第n个等式可为________.(2)已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),…,n∈N*,那么由归纳推理可得函数fn(x)的解析式是fn(x)=________.[解析](1)观察规律可知,左边为n项的积,最小项和最大项依次为(n+1),(n+n),右边为连续奇数之积乘以2n,则第n个等式为:(n+1)(n+2)(n+3)·…·(n+n)=42n×1×3×5×…×(2n-1).(2)依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x22-1x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x23-1x+23,…,由此归纳可得fn(x)=x2n-1x+2n(x>0).[答案](1)(n+1)(n+2)(n+3)·…·(n+n)=2n×1×3×5×…×(2n-1)(2)x2n-1x+2n(x>0)[类题通法]归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.[针对训练]下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是________.解析:由图知第n个图形的小正方形个数为1+2+3+…+n.∴总个数为nn+12.答案:nn+12考点三演绎推理[典例]数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n∈N*).证明:(1)数列Snn是等比数列;(2)Sn+1=4an.5[证明](1)∵an+1=Sn+1-Sn,an+1=n+2nSn,∴(n+2)Sn=n(Sn+1-Sn),即nSn+1=2(n+1)Sn.故Sn+1n+1=2·Snn,(小前提)故Snn是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义)(2)由(1)可知Sn+1n+1=4·Sn-1n-1(n≥2),∴Sn+1=4(n+1)·Sn-1n-1=4·n-1+2n-1·Sn-1=4an(n≥2).(小前提)又∵a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有Sn+1=4an.(结论)[类题通法]演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.[针对训练]如图所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,且DE∥BA.求证:ED=AF(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提)∠BFD与∠A是同位角,且∠BFD=∠A,(小前提)所以DF∥EA.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE∥BA且DF∥EA,(小前提)所以四边形AFDE为平行四边形.(结论)(3)平行四边形的对边相等,(大前提)ED和AF为平行四边形的对边,(小前提)所以ED=AF.(结论)上面的证明可简略地写成:6∠BFD=∠A⇒DF∥EADE∥BA⇒四边形AFDE是平行四边形⇒ED=AF.[课堂练通考点]1.(2018合肥模拟)正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.给出下列三个类比结论.①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn;②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是()A.0B.1C.2D.3解析:选B只有③正确.3.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199解析:选C记an+bn=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.4.(2013·青岛期末)如果函数f(x)在区间D上是凸函数,那么对于区间D内的任意x1,x2,…,xn,都有fx1+fx2+…+fxnn≤fx1+x2+…+xnn.若y=sinx在区间(0,π)上是凸函数,那么在△ABC中,sinA+sinB+sinC的最大值是________.解析:由题意知,凸函数满足fx1+fx2+…+fxnn≤fx1+x2+…+xnn,7sinA+sinB+sinC≤3sinA+B+C3=3sinπ3=332.答案:3325.设等差数列{bn}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论.设等比数列{an}的前n项积为Tn,则T4,________,________,T16T12成等比数列.解析:对于等比数列,通过类比等差数列,有等比数列{an}的前n项积为Tn,则T4=a1a2a3a4,T8=a1a2…a8,T12=a1a2…a12,T16=a1a2…a16,所以T8T4=a5a6a7a8,T12T8=a9a10a11a12,T16T12=a13a14a15a16,所以T4,T8T4,T12T8,T16T12的公比为q16,因此T4,T8T4,T12T8,T16T12成等比数列.答案:T8T4T12T86.(2014·山西四校联考)已知x∈(0,+∞),观察下列各式:x+1x≥2,x+4x2=x2+x2+4x2≥3,x+27x3=x3+x3+x3+27x3≥4,…,类比得x+axn≥n+1(n∈N*),则a=________.解析:第一个式子是n=1的情况,此时a=11=1;第二个式子是n=2的情况,此时a=22=4;第三个式子是n=3的情况,此时a=33=27,归纳可知a=nn.答案:nn[课下提升考能]第Ⅰ组:全员必做题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是()A.①B.②C.③D.①和②解析:选B由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x
本文标题:推理与证明题型全归纳(AB卷)
链接地址:https://www.777doc.com/doc-4867157 .html