您好,欢迎访问三七文档
PricingInterestRateDerivatives:AGeneralApproach1GeorgeChackoHarvardUniversitySanjivDasHarvardUniversityAugust19991Incomplete,commentswelcome.Thisisasubstantiallyrevisedversionofthepaper\PricingAverageInterestRateOptions:AGeneralApproach(1998)basedontheoriginalpaper\AverageInterest(NBERWorkingPaperNo.6045[1997]).Thecommentsoftheeditorandananonymousrefereearegratefullyacknowledged,andhavehelpedtremendouslyinimprovingthecontentandexpositionofthepaper.ThanksalsotoMarcoAvellaneda,EricReiner,VladimirFinklestein,AlexLevinandseminarparticipantsattheCourantInstituteofMathematicalSciences,NewYorkUniversity,theComputationalFinanceGroupatPurdueUniversity,andtheRisk99conferencefortheircomments.PleaseaddressallcorrespondencetotheauthorsatHarvardUniversity,GraduateSchoolofBusinessAdministration,MorganHall,SoldiersField,Boston,MA02163.AbstractPricingInterestRateDerivatives:AGeneralApproachTherelationshipbetweena nestochasticprocessesandbondpricingequationsinex-ponentialtermstructuremodelshasbeenwell-established(seeDu eandKan[42]).Weextendthislinkagetothepricingofinterestratederivatives.Thispapershowsthat,ifthetermstructuremodelisexponential-a ne,thenthereisasimplelinkagebetweenthebondpricingsolutionandthepricesofmanywidelytradedinterestratederivativesecurities.Ourresultsaregeneral,andapplytom-factorprocesseswithndi usionsandljumpprocesses.Regardlessofthenumberofshocks,thepricingsolutionsrequireatmostasinglenumericalintegral,makingthemodeleasytoimplement.Weprovidemanyexamplesofoptionsthatyieldsolutionsusingthemethodsofthepaper.Fastestimationofthesemodelsispossiblebyvectorizingtheequationsforthepricingsolutions.Arangeofnumericalsolutionsillustratestheuseofthemodels.InterestRateDerivatives:AGeneralApproach.........................................11IntroductionTheliteratureontermstructuremodellinghasevolvedfromone-factordi usionmodelssuchasCox,Ingersoll,&Ross[32]andVasicek[83]tomultifactormodelssuchasBrennan&Schwartz[17],Longsta &Schwartz[67],Balduzzi,Das,&Foresi[7],andDu e&Singleton[43]aswellasjump-di usionmodelssuchasAhn&Thompson[1],Das&Foresi[36],andDas[35].ThemotivationforthisevolutionintermstructuremodelshascomefromempiricalpaperssuchasAit-Sahalia[2],Chan,Karolyi,Longsta ,&Sanders[26].1.However,asworkproceedsonbettermatchingthedynamicsoftheshortratetotheobservedtermstructure,theareaof xedincomederivativepricing,themainapplicationformodellingtheshortrateprocess,haslaggedbehind.Inthispaper,weattempttobridgethegapbetweenthemulti-factor,jump-di usionmodelsoftheshortratethataresocommonlyusednowandthepricingof xedincomederivatives.Speci cally,weshowthatanyinterestrateprocess(withanynumberoffactorsincludingstochasticvolatility,stochasticcentraltendency,etc.,orutilizingdi usionorjump-di usionprocesses)thatleadstoanexponentialtermstructuremodel,alsolendsitselftoanalyticsolutionsforthreelargeclassesof xedincomesecurities.Thesemethodssupportnumericaltechniqueswhichallowforeasyimplementationinthecontextofano-arbitrageapproach.Itisourhopethattheresultsofthispaperwillallowbothresearchersandpractitionerstofocusontheappropriatestochasticprocessfortheshortrateanditsfactors,andobviateconcernsastowhetherspeci cformsoftheshortrateleadtotractablesolutionsforpopular xedincomesecurities.ThebenchmarkpaperofDu eandKan[42]establishedthelinkbetweena nestochas-ticprocessesandexponential-a netermstructuremodels.2Theyshowedthatthefactorcoe cientsofthesetermstructuremodelsaresolutionstoasystemofsimultaneousRiccatiequationsandthatthesecoe cientsarefunctionsofthetimetomaturity.Thekernelofourtechniqueresidesinthefactthatthesolutionfordi erenttypesofinterestrateoptionssolvesanalmostidenticalsystemsofequations.Theonlydi erencebetweenthetwosetsofequationsisintheconstanttermsunderlyingtheequations.BymanipulatingtheRiccatiequationsandvaryingtheconstantterms,wedevelopaproceduretopriceoptionsusingtheknowncomponentsoftheoriginaltermstructuremodel.Thus,weessentiallyshowthatoncetheexponential-a netermstructuremodelisderived,thepricingformulasforawiderangeofpopular xed-incomederivativescanbewrittenbyinspectionfromthecomponentsofthetermstructuremodel.3Speci cally,weshowthatthisapproachisfeasibleforthreelargeclassesof xedincomederivatives:thosewith(1)payo sthatarelinearintheshortrateandfactors;(2)payo sthatareexponential-a neintheshortrateandfactors;and(3)payo sthatareanintegralovertimeofalinearcombinationoftheshortrateandfactors.Thesethreepayo structuresencompassmostofthepopular xed-incomederivatives.1ManyotherpapersincludingthosebyBrown&Dybvig(1989),Litterman&Scheinkman(1991),andStambaugh(1988)havetosimilarconclusions.2Dai&Singleton(1997)providesacharacterizationoftheexponential-a neclassoftermstructuremodelsastheyunifyandgeneralizethisclass.3Subsequenttotheoriginalversionofthispaper,BakshiandMadan[9],andDu e,Pan,andSingleton[44]haveindenpendentlydevelopedresultsthatparallelsomeofthosederivedinthispaper.InterestRateDerivatives:AGeneralApproach.........................................2Ourtechniqueisgeneralinthatitappliestoanymulti-factor,exponential-a netermstructure
本文标题:Abstract Pricing Interest Rate Derivatives A Gener
链接地址:https://www.777doc.com/doc-4888374 .html