您好,欢迎访问三七文档
圆与方程基本题型基本题型类型一:圆的方程例1求过两点)4,1(A、)2,3(B且圆心在直线0y上的圆的标准方程并判断点)4,2(P与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P与圆的位置关系,只须看点P与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(rbyax.∵圆心在0y上,故0b.∴圆的方程为222)(ryax.又∵该圆过)4,1(A、)2,3(B两点.∴22224)3(16)1(rara解之得:1a,202r.所以所求圆的方程为20)1(22yx.解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A、)2,3(B两点,所以圆心C必在线段AB的垂直平分线l上,又因为13124ABk,故l的斜率为1,又AB的中点为)3,2(,故AB的垂直平分线l的方程为:23xy即01yx.又知圆心在直线0y上,故圆心坐标为)0,1(C∴半径204)11(22ACr.故所求圆的方程为20)1(22yx.又点)4,2(P到圆心)0,1(C的距离为rPCd254)12(22.∴点P在圆外.类型二:切线方程、切点弦方程、公共弦方程例6两圆0111221FyExDyxC:与0222222FyExDyxC:相交于A、B两点,求它们的公共弦AB所在直线的方程.分析:首先求A、B两点的坐标,再用两点式求直线AB的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C、2C的任一交点坐标为),(00yx,则有:0101012020FyExDyx①0202022020FyExDyx②①-②得:0)()(21021021FFyEExDD.∵A、B的坐标满足方程0)()(212121FFyEExDD.∴方程0)()(212121FFyEExDD是过A、B两点的直线方程.又过A、B两点的直线是唯一的.∴两圆1C、2C的公共弦AB所在直线的方程为0)()(212121FFyEExDD.2、过坐标原点且与圆0252422yxyx相切的直线的方程为解:设直线方程为kxy,即0ykx.∵圆方程可化为25)1()2(22yx,∴圆心为(2,-1),半径为210.依题意有2101122kk,解得3k或31k,∴直线方程为xy3或xy31.类型三:弦长、弧问题例9、直线0323yx截圆422yx得的劣弧所对的圆心角为解:依题意得,弦心距3d,故弦长2222drAB,从而△OAB是等边三角形,故截得的劣弧所对的圆心角为3AOB.类型四:直线与圆的位置关系例12、若直线mxy与曲线24xy有且只有一个公共点,求实数m的取值范围.解:∵曲线24xy表示半圆)0(422yyx,∴利用数形结合法,可得实数m的取值范围是22m或22m.类型五:圆与圆的位置关系例15:圆0222xyx和圆0422yyx的公切线共有条。解:∵圆1)1(22yx的圆心为)0,1(1O,半径11r,圆4)2(22yx的圆心为)2,0(2O,半径22r,∴1,3,5122121rrrrOO.∵212112rrOOrr,∴两圆相交.共有2条公切线。类型六:圆中的最值问题例18:圆0104422yxyx上的点到直线014yx的最大距离与最小距离的差是解:∵圆18)2()2(22yx的圆心为(2,2),半径23r,∴圆心到直线的距离rd25210,∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是262)()(rrdrd.(一)直击高考题一、选择题1.(辽宁理,4)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为A.22(1)(1)2xyB.22(1)(1)2xyC.22(1)(1)2xyD.22(1)(1)2xy【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径2即可.【答案】B2.(重庆理,1)直线1yx与圆221xy的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离【解析】圆心(0,0)为到直线1yx,即10xy的距离1222d,而2012,选B。【答案】B3.(重庆文,1)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.22(2)1xyB.22(2)1xyC.22(1)(3)1xyD.22(3)1xy解法1(直接法):设圆心坐标为(0,)b,则由题意知2(1)(2)1ob,解得2b,故圆的方程为22(2)1xy。解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1xy解法3(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在y轴上,排除C。【答案】A4.(上海文,17)点P(4,-2)与圆224xy上任一点连续的中点轨迹方程是()A.22(2)(1)1xyB.22(2)(1)4xyC.22(4)(2)4xyD.22(2)(1)1xy【解析】设圆上任一点为Q(s,t),PQ的中点为A(x,y),则2224tysx,解得:2242ytxs,代入圆方程,得(2x-4)2+(2y+2)2=4,整理,得:22(2)(1)1xy【答案】A5.(上海文,15)已知直线12:(3)(4)10,:2(3)230,lkxkylkxy与平行,则k得值是()A.1或3B.1或5C.3或5D.1或2【解析】当k=3时,两直线平行,当k≠3时,由两直线平行,斜率相等,得:kk43=k-3,解得:k=5,故选C。【答案】C7.(陕西理,4)过原点且倾斜角为60的直线被圆2240xyy所截得的弦长为A.3B.2C.6D.2322224024323xyyxy解析:(),A(0,2),OA=2,A到直线ON的距离是1,ON=弦长【答案】D二、填空题8.(广东文,13)以点(2,1)为圆心且与直线6xy相切的圆的方程是.【解析】将直线6xy化为60xy,圆的半径|216|5112r,所以圆的方程为2225(2)(1)2xy【答案】2225(2)(1)2xy9.(天津理,13)设直线1l的参数方程为113xtyt(t为参数),直线2l的方程为y=3x+4则1l与2l的距离为_______【解析】由题直线1l的普通方程为023yx,故它与与2l的距离为510310|24|。【答案】510313.(全国Ⅱ文15)已知圆O:522yx和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于【解析】由题意可直接求出切线方程为y-2=21(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和25,所以所求面积为42552521。【答案】254三、解答题16.(2009江苏卷18)(本小题满分16分)在平面直角坐标系xoy中,已知圆221:(3)(1)4Cxy和圆222:(4)(5)4Cxy.(1)若直线l过点(4,0)A,且被圆1C截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线1l和2l,它们分别与圆1C和圆2C相交,且直线1l被圆1C截得的弦长与直线2l被圆2C截得的弦长相等,试求所有满足条件的点P的坐标。解(1)设直线l的方程为:(4)ykx,即40kxyk由垂径定理,得:圆心1C到直线l的距离22234()12d,结合点到直线距离公式,得:2|314|1,1kkk化简得:272470,0,,24kkkork求直线l的方程为:0y或7(4)24yx,即0y或724280xy(2)设点P坐标为(,)mn,直线1l、2l的方程分别为:1(),()ynkxmynxmk,即:110,0kxynkmxynmkk因为直线1l被圆1C截得的弦长与直线2l被圆2C截得的弦长相等,两圆半径相等。由垂径定理,得::圆心1C到直线1l与2C直线2l的距离相等。故有:2241|5||31|111nmknkmkkkk,化简得:(2)3,(8)5mnkmnmnkmn或关于k的方程有无穷多解,有:20,30mnmnm-n+8=0或m+n-5=0解之得:点P坐标为313(,)22或51(,)22。
本文标题:圆与方程基本题型
链接地址:https://www.777doc.com/doc-4894677 .html