您好,欢迎访问三七文档
【第一单元简易方程】本单元在五年级上册用字母表示数的基础上编排,教学方程的知识。包括方程的概念、解方程的方法以及列方程解决实际问题三大块具体内容。方程是小学数学代数初步知识的主要内容。数学学习从算术范围跨入代数范围,是一次十分重要的飞跃。算术用数字符号表示数量关系,代数用字母符号表示相等关系,两者有明显的不同。这种不同,一方面能促进学生数学能力的迅速发展,另一方面在初学方程阶段会有一段时间的不适应。全单元编排十道例题,具体安排见下表:例1等式的含义例2方程的意义例3等式的性质(一)例4用等式的性质(一)解一步计算的方程例5等式的性质(二)例6用等式的性质(二)解一步计算的方程例7列方程解答一步计算的实际问题例8~例10列方程解答两、三步计算的实际问题从上表可以看出教材编排的几个特点。第一,在一步计算的方程和列方程解答一步计算的实际问题等内容上,教学安排比较细,编排的例题多,推进的步子小。这是因为学生从习惯了的算术思考转变到代数思考,是很不容易的过程,他们克服思维定势,适应新的思维方式需要一段时间。这期间的教学适当缓慢些,符合学生的现实,有利于他们转变思维习惯。第二,编排两道例题教学等式的两条性质,还编排两道例题教学解一步计算的方程。可见,用等式性质解方程是学生应该掌握的基本方法。当然,用四则计算中的各部分关系,也可以解方程,但不能因它而淡化应用等式性质解方程。第三,把解一步计算的方程和列方程解答一步计算的实际问题分开编排,先教学解方程,再教学列方程解决实际问题。因为对初学方程的学生来说,解方程和列方程是两个知识点,都很重要且都有些困难。分别教学,便于突出重点、分散难点,有利于学生稳步掌握基础知识。第四,把解两、三步计算的方程和列方程解决两、三步计算的实际问题合并着教学。例8~例10表面上是列方程解决实际问题,其实既在教学列方程的相等关系和技巧,也在教学解方程的思路与方法。这样的编排,能较好地体现数学内容与现实生活的密切联系:一方面分析实际问题里的数量关系,抽象成方程,形成了知识与技能的教学内容;另一方面利用方程解决实际问题,使知识与技能的教学具有现实意义,能使这个过程成为数学思考、问题解决、情感态度发展的有效载体。再说,学生已经有了解一步计算方程和列方程解决一步计算问题的经验与能力,一并学习解较复杂的方程和解决较复杂的实际问题,困难不会很大。(一)从等式到方程,逐步建构新的数学知识方程是等式里的一类重要对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程,帮助学生了解方程的特点。1.借助天平感受等式的含义。等式是方程概念的生长点,认识方程需要先理解等式,例1就是为教学等式而安排的。在前面的数学学习中,学生对等式已经有了较多接触,但还没有明确等式的概念。为了认识方程,需要进一步体会等式的含义,建立等式的概念。天平两边平衡,表示它两边的物体质量相等;两边不平衡,表示两边物体的质量不相等。把天平两边平衡的现象抽象成等式,可以借助直观情境体会等式的含义。例1给出了一架天平,左边的盘里放一个50克的物体和一个50克的砝码,右边的盘里放一个100克的砝码,看图能写出一个等式“50+50=100”。这个等式的含义,一方面能从天平两边平衡的现象直观感受,另一方面能通过计算50+50体验。教材没有给等式下定义,只要求明白等式里有一个等号,表示左右两边的数或式子相等,这就有了等式的概念。例2继续认识等式,教材里的三点安排应该注意。第一,有些天平的两边平衡,有些天平的两边不平衡。根据各个天平的状态,有时写出了等式,有时写出的不是等式。在相等与不相等的比较中,进一步体会等式的含义。第二,写出的四个式子里都含有未知数,其中两个是含有未知数的等式,另两个是含有未知数的不等式。如果说,面对不含未知数的等式(或不等式),可以通过计算以及比较数的大小体会等号的两边相等(或不相等)。那么,面对含有未知数的等式(或不等式),只能借助天平的直观,体会等号两边相等(或不相等)。感受含有未知数的等式的含义,能进一步加深对等式的认识。第三,由扶到放,帮助学生写出表示天平两边物体质量的大小关系的四个式子。第一个式子根据天平不平衡现象,只要在圆圈里填写大于号,就能得到含有未知数的不等式。第二个式子应先写出表示天平左边盘里物体质量的算式,再根据天平两边平衡,在圆圈里写出等号,形成含有未知数的等式。第三个和第四个式子,都要先写出表示天平左边盘里物体质量的算式,再根据天平不平衡或平衡状态,在圆圈里写出小于号或等号,形成含有未知数的不等式或等式,获得等式含义的深一层体会。2.教学方程的意义,从形式上认识方程。“含有未知数”和“等式”是方程的两个显著特征,人们经常以这两点来识别方程。教学方程,要让学生知道方程的形式特点。例1与例2陆续写出了一些等式或不等式,写出了没有未知数的等式和含有未知数的等式,这些都是教学方程的感知材料。教学时,可以先按“是不是等式”把两道例题写出的式子分类;再按“有没有未知数”把写出的等式分类。指着分出的含有未知数的等式那一类,告诉学生“像x+50=150、2x=200这样含有未知数的等式是方程”,让他们了解这两个式子的共同特点是“含有未知数”和“等式”。还可以让学生对两道例题里写出的50+50=100、x+50>100和x+50<200都不能称为方程的原因作出合理的解释,以获得对方程更加深刻的认识。例2的最后讨论“等式与方程有什么关系”,加强对方程的体验。“白菜”卡通的提问“例1中的等式(指50+50=100)是方程吗?”突出方程应该含有未知数,没有未知数的等式不是方程。教材还利用集合图表达等式与方程的关系,形象地表现出等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,而等式不都是方程。“练一练”第1题,要求先在题目给出的所有式子里找出等式;再在等式里找出方程。这个过程又一次体现了等式与方程之间的关系。这道题里,有以x为未知数的式子,还有以y为未知数的式子,使学生对“未知数”有正确的认识,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。第2题给出的三个等式里,未知数分别用三角形、圆形和正方形表示,要求把用图形符号表示的未知数改写成用字母表示。首先应肯定,给出的三个用图形表示未知数的等式都是方程。然后体会用字母表示未知数比较方便。3.用方程表示现实情境里的相等关系,深入体会方程的意义。在例1和例2里,从等式到方程,学生初步认识了方程。这些认识虽然联系了天平的平衡现象,但还是停留在方程的外部特征上,没有过多关注方程的本质意义。练习一第1题根据线段图列方程。线段图半抽象、半直观地表达数量关系,它排除了有关对象的非数学内容,直观显示数量之间的实质性联系。根据线段图列方程,要集中思考线段图里的相等关系,思维的数学化程度比较高。左边一幅线段图表示“x和22合起来是84”,列出的方程是x+22=84。右边一幅线段图表示“3个x是96”,列出的方程是3x=96。教学这道题,应让学生先说说线段图里的数量关系,再列出方程。还要用线段图里的数量关系解释列出的方程的具体含义,感受方程的本质特征——含有未知数的、表达相等关系的等式。第2题用方程表示现实情境里的数量关系,蕴含了列方程解决实际问题的思想方法,进一步凸显了方程的本质特征。第一个情境是电视机原价x元,优惠112元,现价988元。数量关系是“原价-优惠的元数=现价”,列出的方程是x-112=988。当然,根据数量关系“原价-现价=优惠的元数”列出的x-988=112也是方程。但不要根据数量关系“现价+优惠的元数=原价”列出988+112=x这样的方程。问题不在于988+112=x是不是方程的争论上,而在于像这样求原价仍然是算术的思想方法,不是代数的思想方法。第二个情境里,每杯饮料x毫升,3杯一共480毫升,列出的方程最好是3x=480,不必要求列出480÷x=3这个方程,更不必列出480÷3=x这种方程。因为这个情境最基本的数量关系是“每杯饮料的毫升数×杯数=饮料的总数”,至于“饮料总数÷每杯的毫升数=杯数”和“饮料总数÷杯数=每杯的毫升数”都是基本数量关系根据乘法中各部分关系改写出来的。列方程应该根据最基本的数量关系,一般不应用变化出来的数量关系。类似地,第三个情境里大树高7.3米,小树高x米,大树比小树高6.4米,一般根据“大树高度-小树高度=大树比小树高的米数”列出方程7.3-x=6.4。(二)利用等式性质解方程过去,小学数学主要应用四则计算的各部分关系解方程。如,一个加数=和-另一个加数、被除数=除数×商等。因为学生对这些关系比较熟悉,用来解方程似乎很顺手。其实,这样的方法,只适宜解简单的方程,不适用解较复杂的方程。而且和中学里的解方程很不一致,以后还要改变解方程的思路与方法。教材从学生的长远发展和中小学教学的衔接出发,侧重引导利用等式的性质解方程。这就需要先教学等式的性质,才能用来解方程。这些内容分两段教学:第一段是等式的两边同时加上或减去相同的数,结果仍然是等式;第二段是等式的两边同时乘或除以相同的、不是0的数,结果仍然是等式。在每一段教学等式性质以后,都编排例题及时应用于解方程,引导学生循序渐进地学会解方程的一般思路与方法。1.在直观的情境里,按“形象感受→抽象概括”的线索教学等式性质。教材仍然联系天平的直观情境教学等式的性质。因为在两边平衡的天平上,左右两边物体的质量发生相同的变化,天平两边仍然保持平衡。这种事实如果抽象成数学现象,就是要教学的等式性质。利用天平两边物体的质量有规律地变化,天平保持平衡的事实,能够形象地表示等式的性质,有利于学生理解数学知识。例3教学等式的一个性质。先呈现一架天平,左边盘里放一个质量50克的方块,右边盘里放一个50克的砝码。根据天平两边平衡,写出等式50=50。例题问学生“怎样在天平两边增加砝码,使天平仍然保持平衡?”激活他们的已有生活经验和数学知识。具体地说,可以在天平两边各添一个10克的砝码,原来的等式就变成50+10=50+10,仍然是等式。抽象地想,可以在天平两边各添上一个a克的砝码,写出等式50+a=50+a。根据上述的直观体验和形象思考,初步得出结论:等式两边同时加上同一个数,其结果仍然是等式。例题接着呈现两幅连续的天平图。其中一幅图的天平左右两边都有一个50克的砝码和一个a克的砝码,根据天平两边平衡,应该在50+a○50+a的圆圈里写出“=”,形成一个等式;另一幅图在前面的天平两边,各去掉一个a克的砝码,天平仍然保持两边平衡,这就应该在a+5-()○a+5-()的括号里填去掉的a,在圆圈里写“=”。这一组天平图表明等式两边同时减去同一个数,结果仍然是等式。综合上面发生的两种现象,可以得出“等式两边同时加上或减去同一个数,所得结果仍然是等式”。教材指出这是等式的性质,学生由此意义接受了等式的一条性质。“试一试”给出方程x-25=60,要求根据等号左边的变化“x-25+25”写出右边的变化“60○□”,保持左右两边相等。给出方程x+18=48,根据等号左边的变化“x+18-18”写出右边的变化“48○□”,使结果仍然是等式。这些练习,初步应用了等式的性质,加强对等式性质的体验,还渗透了解方程的思想方法。例5继续教学等式的性质,利用前面学习等式性质的数学活动经验,认识等式的另一条性质。教材仍然根据天平图,在它下面式子的方框里填数,圆圈里填等号,感知等式的变与不变。第一组图,左边的天平表示x=20,右边天平的两边分别添上一个x克的方块和一个20克的砝码。看图填空,体会○左边已经写出的2x,表示原来等式的左边“×2”,○右边应该是20×2,即方框里填“2”,表示右边和左边发生相同的变化。在○里填“=”,表示“结果仍然是等式”。这组天平图直观显示了“等式两边乘同一个数,结果仍然是等式”。类似地,第二组图左边的天平,一端的盘里有3个质量都是x克的方块,另一端盘里3个20克的砝码,表示天平两边平衡的等式是3x=60。右边的天平,一端隐去2个方块,另一端隐去2个砝码。○左边写出的“÷3”,表示原来等式的左边“除以3”,学生就会
本文标题:简易方程教材分析
链接地址:https://www.777doc.com/doc-4907822 .html