您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 畜牧/养殖 > 【9A文】四川农业大学生物化学考研要点
【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】第一章核酸的结构与功能DNA的变性:在理化因素作用下,DNA碱基对间的氢键断裂,双螺旋解开成为单链,从而导致DNA的理化性质即生物学性质发生改变,这种现象称为DNA的变性。这是一个跃变过程,伴有增色效应,DNA功能丧失。DNA的复性:在一定条件下,变性DNA单链间碱基重新配对,恢复双螺旋结构,伴有A260减小(减色效应),DNA功能恢复。(将变性DNA经退火处理,使其重新形成双螺旋结构的过程,称为DNA的复性。)增色效应和减色效应:当将DNA的稀盐溶液加热到80-100°C时,双螺旋结构发生解体,两条链分开,形成无规则线团,一系列理化性质也随之改变:变性后,260nm紫外吸收值升高,此效应称之为增色效应。核酸的光吸收值常比其各核苷酸成分的光吸收值之和少30%-40%。这是在有规律的双螺旋结构中碱基紧密地堆积在一起造成的。这种现象叫做DNA的减色效应。增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫增色效应。减色效应:DNA在260nm出的光密度比在DNA分子中各个碱基在260nm处吸收的光密度的总和小得多(约少35%-40%),这种现象称为减色效应。分子杂交:不同来源的DNA单链间或单链DNA与RNA之间只要有碱基配对的区域,在复性时可形成局部双螺旋区,称为核酸分子杂交。核酸探针:是以研究和诊断为目的,用来检测特定序列核酸(DNA或RNA)的DNA片段或RNA片段,称为核酸探针。回文结构:脱氧核苷酸的排列在DNA两条链中的顺读与倒读意义是一样的,脱氧核苷酸以一个假想的轴称为180°对称,这种结构称为回问结构。回文序列:DNA分子中以某一中心区域为对称轴,中心区域一侧的碱基序列旋转180°后与另一侧的碱基序列对称重复。Tm值:DNA变性发生在一个很窄的温度范围内,通常把热变性过程中A260达到最大值一半时的温度称为该DNA的溶解温度或熔点,用Tm表示。Chargaff定律:腺嘌呤和胸腺嘧啶的摩尔数相等,即A=T;鸟嘌呤和胞腺嘧啶的摩尔数也相等,即G=C;含氨基的碱基总数等于含酮基碱基总数,即A+C=G+T。嘌呤的总数等于嘧啶的总数,即A+G=C+T。碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G-C(或C-G)和A-T(或T-A)之间进行,这种碱基配对的规律,称为碱基配对规律(互补规律)。超螺旋DNA:双螺旋DNA进一步扭曲所形成的麻花状构象。超螺旋DNA比双螺旋DNA分子更紧密。双螺旋的DNA分子通过自身的多次转动扭曲形成螺旋的螺旋结构,称为超螺旋结构;大多数天然DNA分子为负超螺旋。拓扑异构酶:是一类剪接DNA分子、改变DNA拓扑状态的酶。拓扑异构酶在DNA复制、转录和重组中起重要作用。顺反子:基因功能的单位,一段染色体,它是一种多肽链的密码,一种结构基因。1、某DNA样品含腺嘌呤15.1%(按摩尔碱基计),计算其余碱基的百分含量。2、DNA和RNA的结构和功能在化学组成、分子结构、细胞内分布和生理功能上的主要区别是什么?DNARNA化学组成DNA中的戊糖是β-D-2'-脱氧核糖DNA中的碱基是A、G、C、T脱氧核糖核苷核苷酸:dAMP、dGMP、dCMP、dTMPRNA中的戊糖是β-D-核糖RNA中的碱基是A、G、C、U核糖核苷核苷酸:AMP、GMP、CMP、UMP分子结构一级结构二级结构:双螺旋结构、三链三级结构:超螺旋大多数天然RNA分子是一条单链,其可以发生分子自身回折,而使互补碱基区形成局部类似DNA的双螺旋区。不能配对的碱基区域则形成突环,不同的RNA分子因碱基序列不同而具有不同比例的双螺旋区。tRNA二级结构:单链、三叶草形、四臂四环tRNA三级结构:在二级结构基础上进一步折叠扭曲形成倒L型细胞内分布在真核细胞中,DNA主要集中在细胞核线粒体和叶绿体中均有各自的DNA原核细胞,DNA存在于类核细胞质,少量存在于细胞核生理功能DNA是遗传物质,是遗传信息的载体、负责遗传信息的储存和发不,并通过复制将遗传信息传递给子代RNA负责遗传信息的表达,它转录DNA的遗传信息,直接参与蛋白质的生物合成,将遗传信息翻译成各种蛋白质,使生物体进行一系列的代谢活动,从而能够生长、发育、繁殖和遗传3、DNA双螺旋结构有些什么基本特点?这些特点能解释哪些最重要的生命现象?两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成嘌呤碱和嘧啶碱层叠于螺旋内侧,碱基平面与纵轴垂直,碱基之间的堆集距离为0.34nm。链间碱基按A-T、G-C配对。磷酸与脱氧核糖单位作为不变的骨架组成位于外侧,彼此通过磷酸二酯键连接。螺旋直径为2nm,顺轴方向每隔0.34nm有一个核苷酸,两个核苷酸之间的夹角为36°。螺旋结构每隔10隔碱基对重复一次,间隔3.4nm。【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】一条多核苷酸链上的嘌呤碱基与另一条链上的嘧啶碱基以氢键项链,匹配成对。4、比较tRNA、rRNA和mRNA的结构和功能。tRNA:在蛋白质合成时起着携带活化氨基酸的作用。由70-90个核苷酸组成,沉降系数在4S左右;一般由四个臂四个环组成;三叶草形;单链tRNA三级结构为倒L型rRNA:构成核糖体的骨架。单链,螺旋化程度较tRNA低;与蛋白质组成核糖体后方能发挥其功能mRNA:蛋白质合成的模板帽子结构5、从两种不同细菌提取得DNA样品,其腺嘌呤核苷酸分别占其碱基总数的32%和17%,计算这两种不同来源DNA四种核苷酸的相对百分组成。两种细菌中哪一种是从温泉(64℃)中分离出来的?为什么?6、计算(1)分子量为3´105的双股DNA分子的长度;(2)这种DNA一分子占有的体积;(3)这种DNA一分子占有的螺旋圈数。(一个互补的脱氧核苷酸残基对的平均分子量为618)7、用稀酸或高盐溶液处理染色质,可以使组蛋白与DNA解离,请解释。染色质中的DNA和蛋白质在稀酸或高盐溶液中的溶解度不同,通过离心的方法可以分离DNA和蛋白质.原理是利用了DNA和蛋白质在稀酸或高盐溶液中的溶解度不同.8、真核mRNA和原核mRNA各有什么特点?真核mRNA特征:单顺反子,5'端存在帽子结构,3′端polRA尾巴。原核mRNA特征:先导区+翻译区(多顺反子)+末端序列;半衰期短,以多顺反子的形式存在;3'端没有或只有较短的多聚A结构。原核生物中,mRNA的转录和翻译发生在同一个细胞空间,这两个过程几乎是同步进行。真核细胞中,mRNA的合成和功能表达在不同的空间和时间范畴。第二章蛋白质化学氨基酸等电点:当氨基酸溶液在某一定PH值时,使某特定氨基酸分子所带正负电荷相等,称为两性离子,在电场中既不向阳极移动,也不向阴极移动,此时溶液的PH值即为氨基酸的等电点。蛋白质的等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。当蛋白质在某一PH溶液中,酸性基团带的负电荷恰好等于碱性基团带的正电荷,蛋白质分子净电荷为零,在电场中既不向阳极移动,也不向阴极引动,此时溶液的PH值称为该蛋白质的等电点(pI)。肽键:一分子氨基酸的α-羧基与另一个分子氨基酸的α-氨基脱水缩合形成的酰胺键(-CO-NH-),属共价键。肽键是蛋白质结构中的主要化学键,此共价键较稳定,不易被破坏。肽链:多个氨基酸以肽键连接的反应产物称为肽或肽链。双缩脲反应:含有两个以上肽键的化合物在碱性溶液中与Cu2+生成紫红色到蓝紫色的络合物,称为双缩脲反应,可用以测定多肽和蛋白质含量。蛋白质的一级结构:指多肽中氨基酸的排列顺序,其维系键是肽键,包括二硫键的位置,称为蛋白质的一级结构,这是蛋白质最基本的结构,它内寓着决定蛋白质高级结构和生物功能的信息。肽平面:肽键具有部分双键的性质,不能自由旋转,组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面,为刚性平面,称为肽平面或酰胺平面。二面角:肽平面之间的Cα分别以两个单键(Cα-N1)和(Cα-C2)与两个肽平面相连。绕Cα-N1键旋转的角度称为φ角,绕Cα-C2键旋转的角度称为ψ角,这个旋转角度叫二面角,可表示出相邻的两个肽平面的相对位置。蛋白质的二级结构:肽链主链不同肽段通过自身的相互作用、形成氢键,沿某一主轴盘旋折叠而形成的局部空间结构,因此是蛋白质结构的构象单元,主要有α-螺旋、β-折叠和无规则卷曲等。蛋白质的三级结构:指的是多肽链在二级结构的基础上,通过侧链基团的相互作用进一步卷曲折叠,借助次级键(氢键、疏水键、范德华力、离子键等)维系使α-螺旋、β-折叠片、β-转角等二级结构相互配置而形成的特定的构象。三级结构的形成使肽链中所有的原子都达到空间上的重新排布。蛋白质的四级结构:由相同或不同亚基按照一定排布方式聚合而成的蛋白质结构,维持司机结构稳定的作用力是疏水键、离子键、氢键、范德华力。亚基是指参与构成蛋白质司机结构的而又具有独立三级结构的多肽链。超二级结构:指丢失多肽链上若干相邻的构象单元(如α-螺旋、β-折叠、β-转角等)彼此作用,进一步组合成有规则的结构组合体,如α螺旋-β转角-α螺旋。结构域:是存在于球状蛋白质分子中的两个或多个相对独立的、在空间上能辨认的三维实体,每个由二级结构组合而成,充当三级结构的构件,其间由单肽链连接。蛋白质变性与复性:当天然蛋白质受到某些理化因素的影响,使其分子内部原有的高级结构发生变化时,蛋白质的理化性质和生物学功能都随之改变或丧失,但并未导致蛋白质一级结构的变化,这种现象叫变性作用,变性后的蛋白质称为变性蛋白。蛋白质的变性作用如果不过于剧烈,则是一种可逆过程。高级结构松散了的变性蛋白质通常在去除变性因素后,可缓慢地重新自发折叠形成原来的构象,恢复原有的理化性质和生物活性,这种现象称为复性。分子病:由于基因突变导致蛋白质一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】而引起的疾病,称为分子病。盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。别构效应:通过空间构象的转变来完成生物学功能。1、为什么说蛋白质是生命活动最重要的物质基础?蛋白质元素组成有何特点?P29答:生物体最主要的特征是生命活动,而蛋白质是生命活动的体现者:酶是以蛋白质为主要成分的生物催化剂,代谢反应几乎都是在酶的催化下进行的。结构蛋白参与细胞和组织的建成,如微管蛋白、伸展蛋白、胶原蛋白等。某些动物激素是蛋白质,如胰岛素、生长素、促卵泡激素、促甲状腺激素等,在代谢调节中具有十分重要的意义。运动蛋白如肌肉中的肌动蛋白、肌球蛋白以及鞭毛和纤毛蛋白与肌肉收缩和细胞运动有关。高等动物的抗体、补体、干扰素等蛋白质具有防御功能。某些蛋白质具有运输功能,如血红蛋白和肌红蛋白运输氧;脂蛋白运输脂类。激素和神经递质的受体蛋白有接受和传递信息的功能。细胞表面抗原参与免疫反应和细胞识别。染色质蛋白、阻遏蛋白、转录因子等参与基因表达的调控;细胞周期蛋白等具有调控细胞分裂、增殖、生长、分化的功能。种子贮藏蛋白、卵白蛋白、血浆白蛋白等具有贮存氨基酸和蛋白质的功能。蛋白质主要元素组成:C、H、O、N、S及P、Fe、Cu、Zn、I、Se等微量元素。蛋白质平均含N量为16%,这是凯氏定氮法测定蛋白质含量的理论依据。蛋白质含量=蛋白质含氮量R6.252、试比较较GlR、Pro与其它常见氨基酸结构的异同,它们对多肽链二级结构的形成有何影响?答:都含一个氨基羧基H与侧链基团,Pro侧链基团与α氨基酸形成环化结构,亚氨基酸,GlR不含手性碳原子。由于Pro的亚氨基参与形成肽键之后,氮原子上已米有氢原子,无法充当氢键供体,致使α-螺旋在该处中断,并产生一个“结节”。3、蛋白质水溶液为什么是一种稳定的亲水胶体?答:蛋白质的分子量很大,容易再水溶液中形成直径1-100nm的颗粒,因而具有胶体溶液的特征。可溶性蛋白质分子表面分布着大量极性氨基
本文标题:【9A文】四川农业大学生物化学考研要点
链接地址:https://www.777doc.com/doc-4910080 .html