您好,欢迎访问三七文档
◇说课稿◇1空间两点间的距离说课稿----郧县第一中学胡晓玲今天我说课的内容是人教版数学必修(2)第四章“4.3.2空间两点间的距离”,主要内容是建立空间直角坐标系中两点间的距离公式和空间两点间的距离公式的运用。我将通过教材分析、目标分析、教法学法、教学程序和教学评价五个部分,阐述本课的教学设计。一一一、、、教教教材材材与与与学学学情情情分分分析析析1.地位与作用点是组成空间几何体最基本的元素之一,空间两点间的距离也是最简单的一种距离。本节是用坐标法研究空间中点得坐标的表示以及空间两点间的距离公式。对本节的研究,是对前面学习两点间距离公式的基础上进行的推广,同时为后面学习选修2—1中第三章空间向量与立体几何奠定了基础,具有承前启后的重要作用。2.学情分析(1)知识与能力:在上一节,学生已经在空间直角坐标系中学习了如何求空间任意一点的坐标使学生对空间直角坐标系有了初步的认识。(2)学生实际:我班学生实际是基础扎实、思维活跃,但由于女生较多所以抽象思维的能力比较欠缺,所以需要老师循序渐进的引导。二二二、、、目目目标标标分分分析析析1.教学目标根据新课程标准的理念,以及上述教材结构与内容的分析,考虑到学生已有的知识结构及心理特征,制定如下三维教学目标:【知识与技能】(直接性目标)(1)让学生理解空间内两点间的距离公式的推导过程,掌握空间两点间距离公式及其简单应用,会用坐标法解决一些简单的几何问题;(2)通过由特殊到一般的归纳,培养学生探索问题的能力。【过程与方法】(发展性目标)(1)通过对表示特殊长方体顶点的坐标的表示,以及对长方体体对角线长度的探索,利用平面两点间的距离公式以及勾股定理推导出空间两点间的距离公式,通过推导公式方法的发现,培养学生观察发现、分析归纳、抽象概括、数学表达等基本数学思维能力;(2)在推导过程中,渗透用代数法研究几何问题的数学思想。【情感态度价值观】(可持续性目标)培养学生思维的严密性和条理性,同时感受数学的形式美与简洁美,从而激发学生学习兴趣。2.教学重点、难点根据教学目标,应有一个让学生参与实践——探索发现——总结归纳的探索认知过程。特确定如下重点与难点:【重点】空间两点间的距离公式和它的简单应用【难点】使学生掌握用坐标法解决空间几何问题的数学思想。【难点的确定】根据学生的认知水平,学生对于用坐标法研究几何问题只是停留在初步◇说课稿◇2认识,对于坐标法的基本步骤还不清楚,这需要一个过程。所以把用坐标法解决空间几何问题确定为本节课的难点。【难点的突破】本课的重点——空间两点间的距离公式本身就是坐标法的应用,同时再通过一系列的典型例题,由浅入深,让学生自主探究,分析、整理归纳出坐标法的一般步骤,从而突出重点、突破教学难点.三三三、、、教教教法法法学学学法法法数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,理性思考。为此我设计如下教法和学法:1.教学方法在“以生为本”理念的指导下,充分体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,构建学生主动的学习活动过程。在教学策略上我采用:创设问题情境————学生自主探究——归纳与总结——反思与评价组成的探究式教学策略。本节课难点在于用坐标法解决平面几何问题,所以利用探究式教学,更符合学生的认知规律。同时在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。2.学法指导新课标的理念倡导“以人为本”,强调“以学生发展为核心”.因此本节课给学生提供以下4种学习的机会:1.提供观察、思考的机会:用亲切的语言鼓励学生观察并用学生自己的语言进行归纳.2.提供操作、尝试、合作的机会:鼓励学生大胆利用资源,发现问题,讨论问题,解决问题.3.提供表达、交流的机会:鼓励学生敢想敢说,设置问题促使学生愿想愿说.4.提供成功的机会:赞赏学生提出的问题,让学生在课堂中能更多地体验成功的乐趣.四四四、、、教教教学学学程程程序序序“数学是思维的体操”,课程标准指出,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识间的有机联系,感受数学的整体性.课标又指出,鼓励学生积极参与教学活动.为此,在具体教学过程中,把本节课分为以下:“创设情境——课题引入——探究新知——应用举例——课堂小结——布置作业”六个阶段来完成.(一)创设情境引导性语言:在平面直角坐标系中,我们可以通过平面内的两个点得坐标,求出两点间的距离。那么同样的在空间中当两个点得坐标确定后,那么他们之间的距离也应该是唯一的。我们需要通过探索来发现两点间的距离公式。(设计意图:使学生通过对已有知识及思想方法的回忆,思考新的问题。)(二)课题引入(1)平面上两点间的距离公式是什么,(2)如何求空间一点的坐标那么它在各个坐标平面内的射影坐标是什么,有什么特点。◇说课稿◇3(设计意图:通过对前面相关知识的复习使学生迅速进入本节课的学习情境,同时对后面的新课讲授提供知识储备。使学生能迅速联想到,空间直角坐标系是在平面直角坐标系的基础上再增加一个竖轴。)(三)探究新知空间两点间的距离公式问题1:长方体长宽高分别为2.3.4那么各个顶点的坐标分别是什么。其体对角线的长度为多少,是如何求得的。(设计意图:教学应从学生已有的知识体系出发,特殊长方体的体对角线的长度是本节课深入研究两点间距离公式的认知基础,这样设计有利于引导学生顺利地进入学习情境。)问题2:空间中点p的坐标是(),求点P到坐标原点O的距离(设计意图:通过对问题1的探索由一般到特殊研究空间任意一点到原点的距离。)问题3:如果OP为定长R,那么表示什么图形。(设计意图:数形结合,通过用代数方法解决几何问题。同时通过对这一问题的探索会提高学生的学习兴趣。)问题4:设点()()是空间任意两点,那么如何求出这两点间的距离呢。(设计意图:空间两点间的距离公式的推导,相对来说比较复杂,所以先考虑简化情形,将其两次特殊化,引导学生观察分析,寻找规律,使学生经历从易到难,从特殊到一般的认识过程。)(四)应用举例例1已知空间两点A(-3,-1,1)B(-2,2,3)在Z轴上求一点P,使|PA|=|PB|,求出点P得坐标并求|PA|的值.(设计意图:复习坐标轴上点的坐标的设法。然后直接利用两点间距离公式求解,而设出P点坐标,正是典型的坐标法。)通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入练习环节。我安排了以下三个练习。练习1:已知点A(-3,-1,1)B(-2,2,3)在y轴上求一点P,使|PA|=|PB|,并求|PA|的值.(设计意图:本练习是对例1的直接巩固。)练习2;已知空间一点P(1,2,3)在Z轴上取一点Q使|PQ|最小,求点P得坐标。练习3:在XOY平面内的直线X+Y=1上找一点M,使点M到N(6,5,1)的距离最小。(设计意图:这两个练习都是几何问题中求最值得问题。通过这两个练习,可以总结出坐标法的一般步骤是先建立坐标系,然后通过坐标表示题目中的各个量,最后通过代数运算解决几何关系。)例2.以知点A(1,-2,11)B(4,2,3)C(6,-1,4)判断该三角形的形状。(设计意图:本题是以两点间的距离公式为考察内容的简单几何题,主要是利用线段长度判断三角形的形状。)练习:课后练习3,4两道例题及练习题由浅入深、由易到难、各有侧重,其中例1主要考察距离公式的直接应用。例2主要体现了如何用坐标法解决一些几何问题。体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识◇说课稿◇4(五)课堂小结(1)空间两点间的距离公式是什么?(2)空间中到定点的距离等于定长的点得轨迹是什么?(3)如何利用坐标法来解决一些几何问题?(设计意图:培养学生总结的习惯。)(六)布置作业①课本练习1.2题;(书上)②课本习题4.3的A组第3,题,B组第3题;③体会坐标法的思想,数形结合的思想。(设计意图:通过训练,巩固本课所学知识,检测运用所学知识解决问题的能力。)板书设计五五五、、、教教教学学学评评评价价价分分分析析析1、评价学习过程:通过问题引入,以尝试、提问、讨论、练习等方式,在探究过程中,层层深入,充分挖掘思维的深度和广度,关注整个过程和全体学生,提高学习积极性。2、评价情感教育:通过对学生的语言行为给予肯定的评价,和对暴露问题的及时矫正,培养学生的理性思维并陶冶情操。以上是我对这节课的设想,恳请各位专家和老师批评、指正.谢谢!课题:空间两点间的距离㈠公式推导过程㈡典型例题例1例2例3㈢课后作业◆课堂小结第一步;建立坐标系,用坐标系表示有关的量第二步:进行有关代数运算第三步:把代数运算结果“翻译”成几何关系空间两点间的距离公式
本文标题:两点间的距离说课稿
链接地址:https://www.777doc.com/doc-4914719 .html