您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 小波阈值去噪法的深入研究-陈晓曦
421Vol.42No.120121LASER&INFRAREDJanuary20121001-5078201201-0105-06··121121.1300332.100039、、。。Matlablean。TP391.41ADOI10.3969/j.issn.1001-5078.2012.01.023DeepstudyonwaveletthresholdmethodforimagenoiseremovingCHENXiao-xi12WANGYan-jie1LIULian121.ChangchunInstituteofOpticsFineMechanicsandPhysicsChineseAcademyofSciencesChangchun130031China2.GraduateUniversityofChineseAcademyofSciencesBeijing100039ChinaAbstractInviewofthedrawbacksoftraditionalwaveletthresholdmethodforimagenoisereductionthatitcannotre-movethenoisethoroughlyandmayremovetheusefulinformationthisarticleimprovesthethresholdselectionandthresholdfunctionwhicharethevitalfactorsofthismethod.Thisarticlewillimprovetheunifiedthresholdtomakethethresholdvarywiththechangesofthedecompositionscale.Atthesametimethedeviationofwaveletcoefficientando-riginalcoefficientwilldecreasethereforethemethodwillretaintheadvantagesofthetraditionalsoftthresholdandhardthreshold.Theproposedmethodwithnewthresholdselectionandthresholdfunctionwillmakeitmoreflexibletodealwiththewaveletcoefficientintheprocessofimagenoisereductionwiththehelpofwaveletdecomposing.Experi-mentresultswithMatlabrevealthatthistechnologycanlargelyreducethenoiseoftheCameraimageaddedwithGaussiannoiseandtheimagecontrastSentropyandSNRsignaltonoiseratioalsogetimproved.Theeffective-nessandprecisionofthenewwaveletthresholdmethodforimagenoisereductionpresentedinthisarticlearefinelyprovedbytheresultsoftheexperiments.Keywordsimageenhancementimagenoisereductionwavelettransformationthresholdexecute1。No.60902067。1987-。E-mail1075163923@qq.com2011-05-092011-08-10。———。。22.1。。。1。1。12.2λλλ2-4。1ftwjk2wjkwjkwjk-ujk3wjkft。2.3。。。。。4-7。fx=x|x|>λ0|x|≤{λfx=sgnx|x|-λ|x|>λ0|x|≤{λsgnxsgnn=1x>0-1x{<02.4。8-9。1DJλ=α2ln槡NαN。2λ=3αα。-3α3α6014203α3α10-11。3。3.1。。。。。fx=sgn|x|-pλ1+eq|x|-λ[]|x|≥λ0|x|<{λλ。pqp∈01q≥0。|x|≥λ。pq。p=0qp∈01q=0p∈01q→∞p。pq。qp。pq。|x|≥λ、。3.2。。。λ=α2ln槡NjαNj。αNj。701No.12012。αα=median|fi|/0.槡6745fiα。αDα。λ=αD2ln槡Nj。αDα。44.1Matlab22b。p=0.9q=100022a128×128Camera2b0.20.012c2d2e2f2g2h。2、、。1lean。1。1Cameraleanlean7.61337.07547.53167.51277.57797.51247.53477.577965.466559.0078060.955960.741759.847462.005864.461864.681728.954223.2923.674423.942023.941923.888624.305727.4797801424.2pqpq。pq。q=0p0133p0.20.40.60.8122p0~1p、。p=0.9q0∞4。4q0105010050033q0~∞q。pq。3p∈01q=02p∈01q=0p=0.2p=0.4p=0.6p=0.8p=17.57297.56657.55737.54417.535261.628161.267260.918060.591160.286945.641845.173545.533943.729542.8004abcde4p∈0∞q=0.93p∈0∞q=0.9q=0q=10q=50q=100q=5007.54007.57767.57797.57797.577960.439161.999162.005762.005862.005843.280945.905445.910745.910945.91105。。。。1RafelCGonzalezRichardEWoods.DigitalImagepro-cessingM.2nded.PublishingHouseofElectronicsIn-dustry2007276-320.inChineseRafelCGonzalezRichardEWoods.M.2.2007276-320.2JixiangYan.InfradedImageSquenceEnhancementbasedonWaveletTransformD.Xi'anXi'anUniversityofElectronicScienceandTechnology.2008.21-19.inChinese.D..2008.21-29.3SooChangKimTaeJinKang.AutomateddefectdetectionsystemusingwaveletpacketframeandGaussianmixturemodelC.OpticalSocietyofAmerica20062690-2701.4HaodeZengRenZhang.RestoringandenhancingofthinfogandclouddegradedimagesbasedonwaveletanalysisJ.JournalofPLAUniversityofScienceandTechnolo-gy.2005.76-80.inChinese901No.12012.J..2005.76-80.5ChengZeng.Theresearchofimagede-noisinganden-hancementbasedonwavelettheoryJ.WuhanWuhanUniversityofTechnology200821-39.inChinese.D.200821-39.6JishaJohnMWilscy.EnhancementofweatherdegradedcolorimagesandvideosequencesusingwaveletfusionC.AdvancesinElectricalEngineeringandComputa-tionalScienceLectureNotesinElectricalEngineering200999-109.7JinjuLiZhifengMaQiongzhiWuetal.ImagedenoisebasedonthestationarywavelettranslationwithrotationJ.Laser&Infrared201040111263-1268.inChinese.、J.201040111263-1268.8ChangjiangZhangXiaodongWangHaoranZhang.GlobalandlocalcontrastenhancementalgorithmforimageusingwaveletneuralnetworkandstationarywavelettransformJ.ChineseOpticalLetters2006636-639.9ZhiliangKang.Theresearchofimageenhancementalgo-rithmofinfradedimagebasedonwavelettransformD.ChengduUniversityofElectronicScienceandTechnologyofChina200525-40.inChinese.D.200525-40.10LiwenWang.SpecklesuppressionbasedonnonlinearmultiwavelettransformadapativethresholdvaluemethodJ.Laser&Infrared2006362155-157.inChi-nese.J.2006362155-157.11LinZhangQianshengWangZhihuaXieetal.Multi-waveletadaptivethresholddenoisebasedongenerational-gorithmJ.Laser&Infrared2008382186-190.inChinese.J.2008382櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆186-190.01142
本文标题:小波阈值去噪法的深入研究-陈晓曦
链接地址:https://www.777doc.com/doc-4925909 .html