您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 离散型随机变量及分布列
高二数学选修2-32.1离散型随机变量及其分布列(2)济宁育才中学C123P47例1、在掷一枚图钉的随机试验中,令,针尖向下,针尖向上01X如果针尖向上的概率为p,试写出随机变量X的分布列。解:根据分布列的性质,针尖向下的概率是(1-p),于是,随机变量X的分布列是X01P1-pp像上面这样的分布列称为两点分布列。如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率。C1、在射击的随机试验中,令X=如果射中的概率为0.8,求随机变量X的分布列。0,射中,1,未射中2、设某项试验的成功率是失败率的2倍,用随机变量去描述1次试验的成功次数,则失败率p等于()A.0B.C.D.121323P47例2、在含有5件次品的100件产品中,任取3件,试求:(1)取到的次品数X的分布列;(2)至少取到1件次品的概率.X0123P035953100CCC125953100CCC215953100CCC305953100CCC解:(1)从100件产品中任取3件结果数为3100,C从100件产品中任取3件,其中恰有K件次品的结果为3595kkCC那么从100件产品中任取3件,其中恰好有K件次品的概率为35953100(),0,1,2,3kkCCpXkkC一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件产品数,则事件{X=k}发生的概率为:*(),0,1,2,,min{,},,,,,knkMNMnNCCPXkkmCnNMNnmMnMNN且其中超几何分布:X则称随机变量服从超几何分布.记为:xH(n,M,N),X01…mP…00nMNMnNCCC11nMNMnNCCCmnmMNMnNCCC称分布列为超几何分布P48例3、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和个20白球,这些球除颜色外完全相同。一次从中摸出5个球,至少摸到3个红球就中奖。求中奖的概率。X如:从含有6件次品的10件产品中,任取5件,则取出的产品中次品数的说明:?范围是?12345.X答:取、、、、思考:【课本P49】例1:某一射手射击所得环数ξ的分布列如下:ξ45678910P0.020.040.060.090.280.290.22求此射手”射击一次命中环数≥7”的概率.分析:”射击一次命中环数≥7”是指互斥事件”ξ=7”,”ξ=8”,”ξ=9”,”ξ=10”的和.例2.随机变量ξ的分布列为ξ-10123p0.16a/10a2a/50.3(1)求常数a;(2)求P(1ξ4)一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,以表示取出球的最大号码,求的分布列.例3:解:”3“表示其中一个球号码等于“3”,另两个都比“3”小∴)3(P121236CCC201”4“∴)4(P121336CCC203”5“∴)5(P121436CCC103”6“∴)6(P121536CCC21∴随机变量的分布列为:P654320120310321的所有取值为:3、4、5、6.表示其中一个球号码等于“4”,另两个都比“4”小表示其中一个球号码等于“5”,另两个都比“5”小表示其中一个球号码等于“6”,另两个都比“6”小说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.课堂练习:a13271、下列A、B、C、D四个表,其中能成为随机变量的分布列的是()A01P0.60.3B012P0.90250.0950.0025C012…nP…121418112nD012…nP…131233212331233nB2、设随机变量的分布列为为.,31)(iaiP3,2,1i,则的值课堂练习:3、设随机变量的分布列如下:123…nPK2K4K…K12n求常数K。4、袋中有7个球,其中3个黑球,4个红球,从袋中任取个3球,求取出的红球数的分布列。例4:袋子中有3个红球,2个白球,1个黑球,这些球除颜色外完全相同,现要从中摸一个球出来,若摸到黑球得1分,摸到白球得0分,摸到红球倒扣1分,试写出从该盒内随机取出一球所得分数X的分布列.解:因为只取1球,所以X的取值只能是1,0,-1121(1),(0),66331(1)62PXPXPX∴从袋子中随机取出一球所得分数X的分布列为:X10-1P111632例5:已知随机变量的分布列如下:P-2-13210121611213141121分别求出随机变量⑴21122;⑵的分布列.解:且相应取值的概率没有变化∴的分布列为:1P-11012161121314112121212311⑴由211可得的取值为、21、0、21、1、231例5:已知随机变量的分布列如下:P-2-13210121611213141121分别求出随机变量⑴21122;⑵的分布列.解:∴的分布列为:2⑵由可得2的取值为0、1、4、9222(1)(1)(1)PPP2(0)(0)PP3111412312(4)(2)(2)PPP11126412(9)(3)PP121P09412131411312例3变:一个口袋有5只同样大小的球,编号分别为1,2,3,4,5,从中同时取出3只,以X表示取出的球最小的号码,求X的分布列。解:因为同时取出3个球,故X的取值只能是1,2,3当X=1时,其他两球可在剩余的4个球中任选故其概率为当X=2时,其他两球的编号在3,4,5中选,故其概率为当X=3时,只可能是3,4,5这种情况,概率为24353(1)5CPXC23353(2)10CPXC1(3)10PXX123P33151010∴随机变量X的分布列为变:一个口袋有5只同样大小的球,编号分别为1,2,3,4,5,从中同时取出3只,以X表示取出的球最小的号码,求X的分布列。课堂练习:1、随机变量的所有等可能取值为1,2,3,n,…,若40.3P,则()A.3nB.4nC.10nD.不能确定C2、某一射手射击所得环数分布列为X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数≥7”的概率是_______0.88【练习】课本P49练习1、2、3.1015031012X.在一次购物抽奖活动中,假设某张劵中有一等奖劵张,可获得价值元的奖品,二等奖劵张,每张可获价值元的奖品,其余6张没有奖.某顾客从此10张劵中任抽2张,求;该顾客中奖的概率;该顾客获得的奖品总价值元的概率分布(3)求该顾客获得的奖品总价值不少于50元的概率.思考提高1201020506(1)03XX再根据对立事件的概率之和为,即可得到该顾客中奖的概率.()根据题意可得:的所有可能值为:,,,,,再根据古典概型的概率公式分别求出其概率,进而由题意首先求出该顾客没有中奖的列出的分布列.()由分易概。率,布列知分析:26210112(1=1-=.333CPC求略解:)没有中奖的概率为,中奖的概率2112111163631613222221010101010201020506012121=====;351515152113.15155XPCCCCCCCCCCCCCP3()根据题意可得:的所有可能值为:,,,,,相应的值:,,,,列表略。()11111121636133210302(1).453CCCCCCCC另直接法略例6:分析课本P50B组1、2。小结:一、随机变量的定义:二、随机变量的分类:三、随机变量的分布列:1、分布列的性质:0,1,2,ipi(1)1211ninipppp(2)2、求分布列的步骤:定值求概率列表课外思考某城市出租车的起步价为10元,行驶路程不超过4km则按10元的标准收费。若行使路程超过4km,则按每超出1km加收2元计费(超出不足1km的部分按1km计)。从这个城市的民航机场到某宾馆的路程为15km。某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程收费(这个城市规定:每停车5分钟按1km路程计费),这个司机一次接送旅客的行车路程(依题意取整数)是一个随机变量,他所收的费用也是一个随机变量。(1)求费用关于行车路程的关系式;(2)已知某旅客实付车费38元,问出租车在途中因故停车累计最多几分钟?作业:1、课本P49A组第5、6;2、课本P50B组1、2T。3、练习、习题、三维。
本文标题:离散型随机变量及分布列
链接地址:https://www.777doc.com/doc-4932722 .html