您好,欢迎访问三七文档
2.2.1直线和平面平行的判定(1)直线在平面内-----有无数个公共点a如图:(2)直线在平面外:a①直线a和面α相交:aA如图:②直线a和面α平行:如图:.Aaaa复习:直线与平面的位置关系有公共点无公共点//a直线和平面平行:一条直线与一个平面没有公共点,叫做直线与平面平行。直线a平行于平面α,记作a∥α.αaα画图时通常把表示直线的线段画在表示平面的平行四边形的外面,并且使它与平行四边形的一边平行或与平行四边形内的一条线段平行。线面位置关系动手做做看将课本的一边AB紧靠桌面,并绕AB转动,观察AB的对边CD在各个位置时,是不是都与桌面所在的平面平行?从中你能得出什么结论?ABCDCD是桌面外一条直线,AB是桌面内一条直线,CD∥AB,则CD∥桌面直线AB、CD各有什么特点呢?有什么关系呢?猜想:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的判定定理定理:平面外的一条直线和平面内的一条直线平行,则该直线和这个平面平行。////ababa即abα学科网例1.求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面.已知:空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF//平面BCD.ABCDEF分析:EF在面BCD外,要证明EF∥面BCD,只要证明EF和面BCD内一条直线平行即可。EF和面BCD哪一条直线平行呢?连结BD立刻就清楚了。已知:空间四边形ABCD,E、F分别是AB、AD的中点求证:EF∥平面BCD证明:∴EF∥BD∴EF∥平面BCDBD平面BCD∩ABCDEFAB、AD的中点∵在△ABD中E、F分别是∵EF平面BCD,连接BD,例2、在正方体ABCD—A1B1C1D1中,试作出过AC且与直线D1B平行的截面,并说明理由。解:OM连DB交AC于点O,取D1D的中点M,连MA,MC,则截面MAC即为所求作的截面。∵MO为△D1DB的中位线,∴D1B∥MO,∵D1B平面MAC,MO平面MAC,∴D1B∥平面MAC,则截面MAC为过AC且与D1B平行的截面。ABCDA1B1C1D1直线和平面平行的判定定理定理:平面外的一条直线和平面内的一条直线平行,则该直线和这个平面平行。baba∥baa∥注明:1、定理三个条件缺一不可。2、简记:线线平行,则线面平行。3、定理告诉我们:要证线面平行,得在面内找一条线,使线线平行。1、如图,长方体的六个面都是矩形,则(1)与直线AB平行的平面是:(2)与直线AD平行的平面是:(3)与直线AA1平行的平面是:平面A1C1和平面DC1平面BC1和平面A1C1平面BC1和平面DC12、判断说法是否正确:(1)如果一条直线不在平面内,则这条直线就与这个平面平行。(2)过直线外一点,可以作无数个平面与这条直线平行。(3)如果一直线与平面平行,则它与平面内的任何直线平行。╳√╳练习:2.2.2平面与平面平行定义:如果两个平面没有公共点,那么这两个平面互相平行,也叫做平行平面平面α平行于平面β,记作α∥β(1)平面β内有一条直线与平面α平行,α,β平行吗?(2)平面β内有两条直线与平面α平行,α,β平行吗?ADCBD1A1B1C1FE平面与平面平行的判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。定理的推论如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行αβabPcdα.βαbα,aP,baβ,bβ,a∥∥∥a∥cb∥c①α∥cβ∥c③α∥ca∥c⑤α∥γa∥γ⑥1)α、β、γ为三个不重合的平面,a,b,c为三条不同直线,则有一下列命题,不正确的是a∥γb∥γ②α∥γβ∥γ④a∥ba∥bα∥βα∥βα∥aa∥α练习:例题分析例1、如图:A、B、C为不在同一直线上的三点,AA1BB1CC1求证:平面ABC//平面A1B1C1=∥=∥BA1B1C1AC例2、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD。练习:A1B1C1D1ABCD2、棱长为a的正方体AC1中,设M、N、E、F分别为棱A1B1、A1D1、C1D1、B1C1的中点.(1)求证:E、F、B、D四点共面;(2)求证:面AMN∥面EFBD.MNEF作用:判断或证明线面平行时关键:在平面内找(或作)一条直线与面外的直线平行1、直线和平面平行的定义2、直线和平面平行的判定定理:平面外的一条直线和平面内的一条直线平行,则该直线和这个平面平行。简记为:小结:小结平面与平面平行的判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。定理的推论如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行作业:课本P683,7.每课一练P26
本文标题:辽宁省牛庄高中2013-2014学年高中数学课件:直线和平面平行的判定 (北师大版必修2)
链接地址:https://www.777doc.com/doc-4961101 .html