您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 一次函数和几何综合题(精选版)
1、直线22yx与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OCOB(1)求AC的解析式;(2)在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的数量关系,并证明你的结论。(3)在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①MQACPM的值不变;②MQACPM的值不变,期中只有一个正确结论,请选择并加以证明。2、如图①所示,直线L:5ymxm与x轴负半轴、y轴正半轴分别交于A、B两点。(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③。问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。图①图②图③AFEPNMBBBAAOOOxyxyyxxyoBACPQM3、如图,直线1l与x轴、y轴分别交于A、B两点,直线2l与直线1l关于x轴对称,已知直线1l的解析式为3yx,(1)求直线2l的解析式;(2)过A点在△ABC的外部作一条直线3l,过点B作BE⊥3l于E,过点C作CF⊥3l于F分别,请画出图形并求证:BE+CF=EF;(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。4、如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足2240ab.(1)求直线AB的解析式;(2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;(3)过A点的直线2ykxk交y轴于负半轴于P,N点的横坐标为1,过N点的直线22kkyx交AP于点M,试证明PMPNAM的值为定值.yxyxQPMCBAOOCBA5、如图,直线AB:yxb分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且:3:1OBOC.(1)求直线BC的解析式:(2)直线EF:ykxk(0k)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由?(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。6、如图,直线AB交X轴负半轴于B(m,0),交Y轴负半轴于A(0,m),OC⊥AB于C(2,2)。(1)求m的值;(2)直线AD交OC于D,交x轴于E,过B作BF⊥AD于F,若OD=OE,求BFAE的值;(3)如图,P为x轴上B点左侧任一点,以AP为边作等腰直角APM△,其中PA=PM,直线MB交y轴于Q,当P在x轴上运动时,线段OQ长是否发生变化?若不变,求其值;若变化,说明理由。7、在平面直角坐标系中,一次函数yaxb的图像过点B(1,52),与x轴交于点A(4,0),与y轴交于点C,与直线ykx交于点P,且PO=PA(1)求a+b的值;(2)求k的值;(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.8、在直角坐标系中,B、A分别在x,y轴上,B的坐标为(3,0),∠ABO=30°,AC平分∠OAB交x轴于C;(1)求C的坐标;(2)若D为AB中点,∠EDF=60°,证明:CE+CF=OC(3)若D为AB上一点,以D作△DEC,使DC=DE,∠EDC=120°,连BE,试问∠EBC的度数是否发生变化;若不变,请求值。9、如图,直线AB交x轴正半轴于点A(a,0),交y轴正半轴于点B(0,b),且a、b满足4a+|4-b|=0(1)求A、B两点的坐标;(2)D为OA的中点,连接BD,过点O作OE⊥BD于F,交AB于E,求证∠BDO=∠EDA;(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰RtPBM△,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.10、如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE.(3)在(2)的条件下,连结DE交AB于F.求证:F为DE的中点.ABODEFyxABOMPQxy一次函数与几何综合题1、如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E,F分别在AD,AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.2、已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为108,求出点C的坐标.3、如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB落在x轴正半轴上,直线4833yx经过点C,与x轴交于点E.(1)求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(32,0)且与直线y=3x平行,将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.4、如图1,在平面直角坐标系中,直线12yxm(m0)与x轴,y轴分别交于点A,B,过点A作x轴的垂线交直线y=x于点D,C点坐标(m,0),连接CD.(1)求证:CD⊥AB;(2)连接BC交OD于点H(如图2),求证:32DHBC.图1图25、如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>2),连接BC,以BC为边在第四象限内作等边△CBD.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)直线AD与y轴交于点E,在C点移动的过程中,E点的位置是否发生变化?如果不变求出它的坐标;如果变化,请说明理由.
本文标题:一次函数和几何综合题(精选版)
链接地址:https://www.777doc.com/doc-4969285 .html