您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 电子设计/PCB > PCB设计的ESD抑止准则
PCB设计的ESD抑止准则上网时间:2002年08月24日PCB布线是ESD防护的一个关键要素,合理的PCB设计可以减少故障检查及返工所带来的不必要成本。在PCB设计中,由于采用了瞬态电压抑止器(TVS)二极管来抑止因ESD放电产生的直接电荷注入,因此PCB设计中更重要的是克服放电电流产生的电磁干扰(EMI)电磁场效应。本文将提供可以优化ESD防护的PCB设计准则。电路环路电流通过感应进入到电路环路,这些环路是封闭的,并具有变化的磁通量。电流的幅度与环的面积成正比。较大的环路包含有较多的磁通量,因而在电路中感应出较强的电流。因此,必须减少环路面积。最常见的环路如图1所示,由电源和地线所形成。在可能的条件下,可以采用具有电源及接地层的多层PCB设计。多层电路板不仅将电源和接地间的回路面积减到最小,而且也减小了ESD脉冲产生的高频EMI电磁场。如果不能采用多层电路板,那么用于电源线和接地的线必须连接成如图2所示的网格状。网格连接可以起到电源和接地层的作用,用过孔连接各层的印制线,在每个方向上过孔连接间隔应该在6厘米内。另外,在布线时,将电源和接地印制线尽可能靠近也可以降低环路面积,如图3所示。减少环路面积及感应电流的另一个方法是减小互连器件间的平行通路,见图4。当必须采用长于30厘米的信号连接线时,可以采用保护线,如图5所示。一个更好的办法是在信号线附近放置地层。信号线应该距保护线或接地线层13毫米以内。如图6所示,将每个敏感元件的长信号线(30厘米)或电源线与其接地线进行交叉布置。交叉的连线必须从上到下或从左到右的规则间隔布置。电路连线长度长的信号线也可成为接收ESD脉冲能量的天线,尽量使用较短信号线可以降低信号线作为接收ESD电磁场天线的效率。尽量将互连的器件放在相邻位置,以减少互连的印制线长度。地电荷注入ESD对地线层的直接放电可能损坏敏感电路。在使用TVS二极管的同时还要使用一个或多个高频旁路电容器,这些电容器放置在易损元件的电源和地之间。旁路电容减少了电荷注入,保持了电源与接地端口的电压差。TVS使感应电流分流,保持TVS钳位电压的电位差。TVS及电容器应放在距被保护的IC尽可能近的位置(见图7),要确保TVS到地通路以及电容器管脚长度为最短,以减少寄生电感效应。连接器必须安装到PCB上的铜铂层。理想情况下,铜铂层必须与PCB的接地层隔离,通过短线与焊盘连接。PCB设计的其它准则1.避免在PCB边缘安排重要的信号线,如时钟和复位信号等;2.将PCB上未使用的部分设置为接地面;3.机壳地线与信号线间隔至少为4毫米;4.保持机壳地线的长宽比小于5:1,以减少电感效应;5.用TVS二极管来保护所有的外部连接;保护电路中的寄生电感TVS二极管通路中的寄生电感在发生ESD事件时会产生严重的电压过冲。尽管使用了TVS二极管,由于在电感负载两端的感应电压VL=L×di/dt,过高的过冲电压仍然可能超过被保护IC的损坏电压阈值。保护电路承受的总电压是TVS二极管钳位电压与寄生电感产生的电压之和,VT=VC+VL。一个ESD瞬态感应电流在小于1ns的时间内就能达到峰值(依据IEC61000-4-2标准),假定引线电感为每英寸20nH,线长为四分之一英寸,过冲电压将是50V/10A的脉冲。经验设计准则是将分流通路设计得尽可能短,以此减少寄生电感效应。所有的电感性通路必须考虑采用接地回路,TVS与被保护信号线之间的通路,以及连接器到TVS器件的通路。被保护的信号线应该直接连接到接地面,若无接地面,则接地回路的连线应尽可能短。TVS二极管的接地和被保护电路的接地点之间的距离应尽可能短,以减少接地平面的寄生电感。最后,TVS器件应该尽可能靠近连接器以减少进入附近线路的瞬态耦合。虽然没有到达连接器的直接通路,但这种二次辐射效应也会导致电路板其它部分的工作紊乱。千兆位以太网设备面临的测试挑战上网时间:2002年12月28日过去的以太网产品只需进行电气测试即可,而现在测试工程师面对的标准既要支持电气性能也要支持光学性能,同时更高数据率也对测试提出了新的要求,在高数据率下运行的电子产品会产生噪声问题,而这个问题不会出现在10/100BaseT产品上;另外这类产品的光学部分可能是一些测试工程师首次接触到的光测试。本文讨论影响千兆位以太网产品测试的一些因素,使中国测试工程师在设计测试方案是掌握几个基本概念。正文:随着通信系统进入以互联网协议为中心的网络时代,千兆位以太网产品也呈现出一片欣欣向荣的景象。除了新安装设备外,任何10/100BaseT设备也都是千兆位以太网潜在的更换对象。这个领域的增长潜力是巨大的,预计2005年市场规模将达到近20亿美元。千兆位以太网标准千兆位以太网光接口标准IEEE803.2z和电接口标准803.2ad提供了对该类产品所有方面的完整定义,包括硬件操作、产品验证方法和IP数据结构,标准文本可以免费从IEEE网站下载,标准定义了不同的物理接口,涵盖光学和电气接口。表1是目前一些物理接口和相关线缆选项信息,同时还给出了每种技术所能实现的传输距离。测试工程师全面了解与产品相关的标准是很重要的,尤其是硬件接口部分,这不仅对选择测试设备和将其集成到测试系统中很关键,而且在决定使用哪一种测试对产品进行全面检验也非常重要。设计验证与测试当确定了用于产品验证的一整套测试方案后,测试工程师应关注整个过程而不要被设计验证的细节问题分散注意力,所谓“整个过程”其目的就是要以尽可能低的成本获得尽可能高的产量。其它一些考虑因素包括测试系统所需场地大小、可实现的自动化程度和系统最佳位置等。为了找到一种方法能够以最佳方式完成整个测试,首先一个问题就是要将产品设计工程师所给的大量测试项目削减,使剩下的测试项目能够很好地应用在制造环境中。这些测试必须彻底而快速,以满足产能的要求。测试一般包括被测器件常规功能检验项目及参数测试项目。功能测试检验产品是否可以按照设计要求运行,包括各种通信测试,即从产品发送一数据流并让它接收该数据流以验证数据有没有损坏,这种方法不仅检验物理接口是否功能正常,它还测试了产品内部的工作状况,如软件功能和传输情况。参数测试用于检验产品物理接口的性能指标,包括传输器和接收器的工作范围和数据脉冲形状。这些测试同时适用于电气和光学接口。确定哪一项设计测试应被取消是一件非常困难的事。像板上内置软件算法测试就可以去掉,因为做其它功能测试时需要有合适的软件支持,此时软件及其功能即在默认情况下得到了检验。设计和制造之间的关系会进一步增加制造的难度,因此他们之间必须全力合作,但设计人员经常对生产人员的目标(即用最少的测试达到最大的产能)缺乏了解,尤其在大公司里,某些情况下可能无法达成一致意见,最终不得不由制造工程师确定测试的持续时间和范围。为了确保测试完整,最好的方法是将可能需要的所有测试都包括进来,无论多么生僻。针对千兆位以太网测试而设计的设备通常有很多种可供选择,因此加入增强测试功能仅仅需要考虑是用价格较低的软件升级还是较高的硬件升级。新产品进入生产阶段后,测试工程师就可以开始对产品特性进行描述。有可能出现这样的情况,即某个测试只有在另一个测试没有通过时才不合格,而在另一个测试通过时它也通过,这说明两个测试是重复的;另外当工艺改进时有些测试总是通过,此时也可以取消这个测试以缩短测试时间。这些高级测试性能还可以让设计人员调试或验证新的设计,或进行周期性回归测试。千兆位以太网测试在确定千兆位以太网产品的测试方案时,所采用的方法可以同时包含功能和参数两方面。应确定一组功能测试,不论物理接口如何这些测试都要进行,它们检验产品的第2层和第3层的功能,而不是物理层参数特性。有几家设备公司可提供能测试千兆位以太网模块的设备,这些设备具有不同的测试能力。有两份“请求注解(RFC)”文件详细区分了这类测试结果在性能上的差异,定义千兆位以太网产品设计检验的测试标准,这两份文件分别名为RFC2544和RFC2285。RFC2544描述了互连设备测试基准,包括四个基本测试:1.速度。该测试确定被测器件(UUT)在没有丢失数据包条件下接收并传送帧的最快速度,速率通常由用户选择。2.帧/数据包丢失。该测试确定当被测器件流量负荷很大时丢失的帧/数据包数量,用户可以指定发送的数据包大小,并使用不同大小数据包进行多次测试。3.背靠背。该测试确定被测器件的缓冲性能,方法是以最高理论速率发送脉冲信息然后测试没有丢失的数据包最长信息流。4.等待时间。该测试确定被测器件固有等待时间,初始数据速率取决于速度测试的结果。通常数据包含有一个时间标记并插入到信息流当中,这项测试就是测量带时间标记的数据包通过被测器件的时间。更进一步特性测试可以通过RFC2285中的测试完成,这些测试更适用于设计实验室中,由于它们对测试系统只需增加很少额外费用,所以建议拿到所需的升级软件以进行这类测试,这些测试主要针对通信分布、脉冲信息流和载荷等项目。参数测试考虑参数测试时,确定采用何种测试主要要看接口是光学的还是电气的,不管哪一种接口,测试工程师都必须要考虑参数检验是否适用于他们的具体产品。在某些情况下测试工程师必须同时处理两种接口技术,除了光学和电气接口外,设备上的其它电路部分基本上相同。一些供应商使用千兆位以太网接口转换器(GBIC)提供不同的接口选择,这种转换器实际上也就是产品线路板上电子部分和外部的物理接口,GBIC有光学和电气、多模和单模等配置可供选择,将产品从光接口转换到电接口就像更换插入式模块一样简单。光参数测试光学产品的参数性测试比电气产品的相应测试更加重要,因为在制造过程中光学设备更易于损坏和污染;另外电模块上的接口部件使用在线测试技术很容易实现,而光学模块则很难或几乎不可能使用在线测试技术进行完全检验。但光学产品目前又是使用最为广泛的技术,因为相对于电气产品它不会受到短电缆线和噪声因素的影响。下面列出规范中提出的一些基本测试,IEEE803.2z中还有其它几个光学测试,但如果使用高质量元件这些测试(如中心波长)应该非常一致。1.TX功率。该测试需要一个光功率计,用来测量产品发射(TX)的激光或LED输出功率。2.RX灵敏度。该测试将光衰减器和通信设备结合起来测试被测试器件接收器(RX)端口的灵敏度。通信设备的TX端口连接到光衰减器上,衰减器将传给被测器件RX端口的信号功率降低到产品规范所列最低灵敏度,短距离(SX)RX灵敏度的规范值是-17dBm,长距离(LX)的规范值是-19dBm。3.眼图。该测试使用光通信分析仪检验TX端口是否符合工业标准,眼图可以验证抖动、数据速率和过调等特性。4.消光系数。该测试确定逻辑1对逻辑0的光功率比,这个比值必须足够大以确保检测电路能够将高数据位从低数据位中区分出来。将这些简单的参数测试加入到功能测试中可以在较短时间内达到理想的测试覆盖范围,随着光学产品自动测试平台的普及,我们还可以进一步提高测试的速度。电参数测试对于10/100BaseT以太网产品,很多工程师发现就制造环境而言只需用一组通信量测试就能充分测试电气模块,对功能测试之前先进行过在线测试的模块来说尤其如此,在线测试全面涵盖了这些模块。但不幸的是千兆位电气模块非常复杂,会使在线测试出现问题,测试覆盖率低于35%是很常见的。虽然利用X射线技术可以增加覆盖率,但显然又会出现参数问题。除了测试覆盖率问题之外,1000BaseT和1000BaseCX产品上出现的高数据率还使它们更容易受到噪声问题的影响。新旧以太网技术中一个常用的方法是通过一组适当的连线把测试仪和被测器件连接起来,模仿应用现场发生的真实信号衰减情况。根据表1列出的不同电气接口相关电缆类型,选择最大支持电缆长度可提供现实条件下的最坏情况。如果决定要做电参数测试,可以参考IEEE802.3ad里的一整套电参数测试项目,其中包括测试技术、测试电路、专用线缆甚至还有某些测试所需数据流。标准中所有测试都可在实验室中进行,因为主要一些复杂设备结构难以实现自动化,所以很多没有转化到制造应用中。有些情况下,整套测试在第一批产品上以及以后定期进行,
本文标题:PCB设计的ESD抑止准则
链接地址:https://www.777doc.com/doc-50008 .html