您好,欢迎访问三七文档
1“双星”问题的分析思路两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。一.要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。二.要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。。三.要明确两子星圆周运动的动力学关系。设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M1:22121111121MMvGMMrLrM2:22122222222MMvGMMrLr试由上式1.试推导1r和2r的表达式2.求出双星的运动周期和总质量在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。练习1.美国科学家通过射电望远镜观察到宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统:三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行.设每个星体的质量均为M,忽略其它星体对它们的引力作用,则()A.环绕星运动的周期为T=2πB.环绕星运动的周期为T=2πC.环绕星运动的线速度为D.环绕星运动的角速度为2.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的4倍,两星之间的距离变为原来的2倍,则此时圆周运动的周期为()2A.TB.TC.TD.T3.(多选)2012年7月26日,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O做匀速圆周运动,如图所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中()A.它们做圆周运动的万有引力保持不变B.它们做圆周运动的角速度不变C.体积较大星体圆周运动轨迹半径变大,线速度也变大D.体积较大星体圆周运动轨迹半径变大,线速度变小4.(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100s时,它们相距约400km,绕二者连线上的某点每秒转动12圈。将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星()A.质量之积B.质量之和C.速率之和D.各自的自转角速度1.c2.c3.bc4.bc
本文标题:专题-双星问题
链接地址:https://www.777doc.com/doc-5004898 .html