您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 光伏电站系统效率分析
系统效率分析运行期光伏电站的生产工艺流程为:通过太阳辐照,经直流发电单元(将太阳能转化成直流电能,再经逆变产生交流电),出口电压为AC0.5/0.52kV,再经35kV升压箱变,将电压升至35kV后,由35kV集电线路汇集至电站35kV汇集站,再经110kV汇集站,电压升至110kV后,然后输送至220kV升压站,经220kV主变压器二次升压后,通过220kV架空线路送入系统电网。其发电工艺流程如下:图运行期光伏电站的生产工艺流程图结合光伏电站的运行特点其系统损耗主要为以下几方面组成:(1)入射角造成的不可利用的太阳辐射损耗;(2)灰尘、植被等遮挡损耗(3)温度影响损耗(4)光伏组件不匹配造成的损耗(5)直流线路损耗(6)逆变器损耗(7)交流线路损耗(8)变压器损耗(9)系统故障及维护损耗结合XX项目实施的实际情况,参考《XX光伏发电项目招商文件》中评分标准的要求,技术方案中系统能力先进性(5分),81%得1分,系统效率最高值得5分;因此系统效率即使是重要的招商得分项,同时该参数又直接影响发电量和效益测评即投标申报电价,为科学合理的控制和了解本项目地的系统效率水平,使其尽可能向可操作、可实现的最高效率努力,系统效率基本取值分析如下:(1)不可利用的太阳辐射损耗根据项目地的地理位置、气候气象和太阳辐射数据当地的气象和太阳辐射特点,结合项目地太阳入射角的分析计算,并兼顾山地的地形条件在冬至日真太阳时9:00~15:00的阵列布置原则而确定的日照利用边界,经分析,本次由于入射角造成的不可利用的太阳辐射损耗取值为4.3%。(2)灰尘、植被等遮挡损耗项目当地处荒草地、荒山、宜林地等环境,必然会地表植被和自然扬尘的灰尘以及阵列内部设备的彼此遮挡的问题,对此参照西北勘测设计研究院有限公司基于科研实验电站的集团科研项目《环境因素对光伏工程发电量影响研究研究成果报告》和本公司项目投资运维公司的运维测试的统计成果:灰尘的覆盖对光伏组件的发电量影响较大,灰尘密度越大,发电量下降多越多,随着时间的推移灰尘在静态下密度达到12.64g/m3时,对造成发电量阶段性下降高达20%;且风向和风速对灰尘的在电站的部均匀分布对发电也会产生直接影响。结合阳泉项目场址周边地貌,在电站总体布置中应用三维模拟分析进行量化阴影控制,再者考虑到土地综合利用与未来运维智能和定期组件清洗相结合,科学利用、多措共举下,本次对灰尘、植被等遮挡损耗取值为2.20%。(3)温度影响损耗光伏组件工作温度可以由以下计算公式:Tc=(Ta+(219+832Kt)×(NOTC-20))/800NOCT=45°C,Kt晴朗指数0.7,Tc为光伏组件温度,Ta为环境温度Ƞt=(Tc-25)×ɑ,ɑ为光伏组件的温度功率衰减因子;结合农业种养殖的模式和当地气候、气温条件,根据光伏组件的温度效率系数≥-0.39%/℃的技术指标要求,利用收集到的典型月辐照度和温度数据,采用上述公式结合光伏组件的串并联等方案,进行不同辐射量和温度下的分析计算后,本次由温度引起的发电量损失取值为1.85%。(4)光伏组件不匹配造成的损耗考虑到本次采用的均为高效光伏组件,组件电流、电压的差异,以及组件串联因为电流不一致产生的效率降低现象会优于常规组件,由于我公司采用组件电流分档技术提高组件输出一致性,故本次该损耗取值1.3%。(5)逆变器损耗结合阳泉基地项目的光照资源、地形差异的特点和光伏组串在位置、接线、匹配性的实际运行状况,就设备实际运行工况下自身综合效率而言,会有一定提升,这种提升综合了前端高效设备和优化集成设计的优势,兼顾了资源、地形的突出劣势和发挥自身设备的高效因素情况下,推荐工程应用中的本设备项损耗,考虑取值2.0%(考虑到本次招商文件要求的逆变器中国效率达到或超过98.2%的要求)。(6)直流、交流线路损耗交直流损耗计算:交流线路有功功率损失:直流线路有功功率损失:式中——有功功率损失,W;R——线路电阻,Ω;I——电流,A;暂以275Wp光伏组件为例,峰值功率电流8.69A,交流损耗不含35kV集电线路,根据上述公式和项目地典型子方阵布置方案,各方案功率损耗理论计算结果见下表:表各典型方案功率算好理论计算表典型子阵方案电缆型号电缆长度(km)电阻(Ω/km)损耗百分比1MW组串式GF-WDZCEESR23-1800V-2×4mm23.384.61直流线损0.235%GF-WDZCEESR23-1800V-2×6mm25.043.08ZR-YJY23-0.6/1kV-3×16mm20.481.15交流线损1.131%ZR-YJY23-0.6/1kV-3×150mm20.330.1241.6MW组串式GF-WDZCEESR23-1800V-2×4mm25.524.61直流线损0.236%GF-WDZCEESR23-1800V-2×6mm28.23.08ZR-YJY23-0.6/1kV-3×16mm20.761.15交流线损1.186%ZR-YJY23-0.6/1kV-3×150mm20.580.1241MW集中式GF-WDZCEESR23-1800V-2×4mm23.1184.61直流线损0.659%GF-WDZCEESR23-1800V-2×6mm25.9683.08ZR-YJY23-0.6/1kV-2×50mm20.2650.387ZR-YJY23-0.6/1kV-2×70mm20.260.268YJY-0.6/1kV-3×185mm20.020.033交流线损0.333%1MW集散式GF-WDZCEESR23-1800V-2×4mm23.1184.61直流线损0.660%GF-WDZCEESR23-1800V-2×6mm25.9683.08ZR-YJY23-0.6/1kV-2×35mm20.2650.524ZR-YJY23-0.6/1kV-2×50mm20.260.387YJY-0.6/1kV-3×185mm20.020.033交流线损0.244%2MW集散式GF-WDZCEESR23-1800V-2×4mm26.94.61直流线损0.726%GF-WDZCEESR23-1800V-2×6mm212.83.08ZR-YJY23-0.6/1kV-2×35mm20.550.524ZR-YJY23-0.6/1kV-2×50mm20.950.387YJY-0.6/1kV-3×185mm20.020.033交流线损0.244%结合上述计算分析,本次对直流电缆损耗取值为2.0%,交流线路损耗取值为1.0%。(7)变压器损耗计算本文采用均方根电流系数计算法,根据目前电网公司在计算变压器损耗时普遍使用的《功率因数调整电费办法》和《广东省变压器损耗及功率因数计算方法和查对表》中,变压器的运行能耗22K额定铁损时间额定铜耗时间,计算公式为:220kPtPTPTK。由于《广东省变压器损耗及功率因数计算方法和查对表》中计算电度分别以用户设备利用率(即负载率0.1,0.3,0.5,0.7,1.0分段取值计算),使用相应典型负载率曲线进行积分后,全年日可利用发电时长为12h,取0.3,所得均方根电流系数如下表:表均方根电流系数计算表序号负载率K备注10.12.0620.31.5030.51.2040.71.0751.01.00结合上述公式和参数,对不同变压器的损耗进行测算,见下表:表不同变压器的损耗计算表序号变压器容量(kVA)空载损耗(kW)负载损耗(kW)损耗(%)使用数量(台)平均损耗(%)116001.6916.62.13%202.09%220001.9919.72.01%9结合上述计算分析,本项目采用箱变为1600kVA及2000kVA容量变压器,变压器损耗取值为2.09%。(8)系统故障及维护损耗结合我方参与设计的青海、新疆等西部区域的电站的实际电站运维中出现的逆变器、箱变等设备的故障率和维护现状,本次对系统故障及维护损耗取值为1%。根据以上各部分的效率和损耗计算,在不考虑弃光限电的情况下,系统综合效率系数K为83.09%。具体各系数取值见下表:表系统效率计算序号项目推荐投标指标备注1不可利用的太阳辐射损耗4.30%通过高效单晶硅光伏组件弱光效益、固定可调支架三维设计精细化设计2灰尘、雪等遮挡损耗2.20%组件防尘涂膜、逆变器的动态组串监测、智能化主动化运维,结合当地种养殖的模式优势和人力成本优势,加强清洗与解决劳动力从业需求相结合;3温度影响损耗1.85%由于底层空间的利用,地表温度上升有一定抑制;项目区域的自身气温条件良好4光伏组件不匹配造成的损耗1.35%领跑者技术甚至更高效设备的应用5直流电缆损耗2.00%6逆变器损耗2.50%多路MPPT逆变器的适配性优势;在上述优化的直流系统下实际工作工况下逆变器综合性能较高7交流线路损耗1.00%8变压器损耗2.09%9系统故障及维护损耗1.00%10系统综合效率系数83.09%发电量的分析计算(1)取值依据依据国能新能【2015】194号《关于促进先进光伏技术产品应用和产业升级的意见》,领跑者先进技术产品应达到以下指标:多晶硅、单晶硅和薄膜光伏组件自项目投产运行之日起,一年内衰减率分别不高于2.5%、3%和5%,之后每年衰减率不高于0.7%,项目全生命周期内衰减率不高于20%。根据低衰减高功率PERC优质单晶组件的介绍,PERC电池的长波效应优势保证了PERC组件更好发电能力量子效率体现了电池将光转换为电的能力,量子效率越高,电池效率越高;PERC单晶电池与传统单晶电池的量子效率比较三种电池组件在高辐照度条件下相对效率相差不大;在低辐照度条件下,PERC单晶组件弱光响应优于常规单晶组件,常规单晶组件弱光响应优于常规多晶组件;PERC单晶和常规单晶光谱范围更广,从而具有更好的弱光发电能力,这一优势在阴雨天更为突出;在标准相同辐照条件下,每千瓦单晶系统的年总发电量高于多晶系统约3%左右。美国NREL(国家可再生能源实验室)在2012年6月出具的一份报告,“PhotovoltaicDegradationRates-AnAnalyticalReview”,回顾了近40年所有期刊文献中关于单个组件衰减和系统功率衰减分析的数据。对于单晶组件(mono-Si),2000年以前安装的:年衰减平均0.47%,2000年以后安装的:年衰减平均0.36%。(2)衰减系数的确定结合以上PERC优质单晶组件长期衰减参数,本阶段采用的单晶组件年衰减率暂取0.55%,首年衰减取2%。组件25年衰减结果如下:表组件系统效率衰减表年份组件衰减系数年份组件衰减系数第1年98.0%第14年91.2%第2年97.5%第15年90.7%第3年96.9%第16年90.2%第4年96.4%第17年89.7%第5年95.9%第18年89.2%第6年95.3%第19年88.7%第7年94.8%第20年88.3%第8年94.3%第21年87.8%第9年93.8%第22年87.3%第10年93.3%第23年86.8%第11年92.7%第24年86.3%第12年92.2%第25年85.9%第13年91.7%结合系统效率及组件衰减以及本工程不同运行方式的装机容量,初步计算出不同运行方式下运行期各年的年峰值利用小时数和本项目平均利用小时数。具体数值见下表。表本工程逐年发电量及年利用小时数年份固定式运行方式固定可调式运行方式本项目综合水平年总发电量(万kW·h)年利用小时数(h)年总发电量(万kW·h)年利用小时数(h)年总发电量(万kW·h)年利用小时数(h)第1年5038.821259.701315.521315.526354.341270.87第2年5011.111252.781308.281308.286319.391263.88第3年4983.541245.891301.091301.096284.631256.93第4年4956.141239.031293.931293.936250.071250.01第5年4928.881232.221286.821286.826215.6
本文标题:光伏电站系统效率分析
链接地址:https://www.777doc.com/doc-5089438 .html