您好,欢迎访问三七文档
基于PLC及HMI的造粒机控制系统的设计1目录摘要··································································································2第一章序言························································································31.1PLC的其本概念与基本结构····························································31.2PLC的特点与应用领域··································································31.3人机界面基本概念及应用·······························································3第二章造粒机控制系统构成与功能分析···················································52.1造粒系统结构··············································································52.2造粒系统的控制功能的要求····························································52.3造粒系统技术参数的要求·······························································62.4造粒系统设计分析········································································6第三章造粒机系统的硬件设计································································73.1造粒系统的工作流程·····································································73.2造粒系统PLC的选型·····································································83.3I\O模块的选型············································································93.4造粒系统HMI的选择·····································································93.5其他元件的选择···········································································93.6造粒系统的开发平台····································································10第四章造粒机系统HMI组态设计····························································124.1人机界面组态任务·······································································124.2数据类型地址分布·······································································134.3组态控制画面的设计····································································13第五章造粒机系统的程序设计·······························································165.1程序设计框图·············································································165.2I\O的分配··············································································165.3PLC电气控制接线图·····································································175.4造粒系统基本程序设计·································································185.5循环水温度控制程序设计······························································245.6调速脉冲输出程序设计·································································265.7切头温控程序设计·······································································27第六章系统联调·················································································29结束语······························································································31谢辞·································································································32参考文献···························································································33江苏信息职业技术学院毕业设计报告2基于PLC及HMI的造粒机控制系统的设计摘要:目前,造粒机行业中大部分单位使用的造粒机是传统的继电器接触器控制的设备,存在可靠性低,控制精度低,生产效率低和能耗高等缺点,通过对这些设备进行改造,可花费较少的资金即能全面提升造粒机的技术含量,从而提高产品质量,降低生产成本,具有十分巨大的市场前景。文章提出了应用现代控制理论和控制技术实现造粒机的控制,系统的说明了PLC(可编程序控制器)、HMI(人机界面)等装置的工作原理及其在自动控制设备中的应用,针对造粒机的技术改造要求提出了具体的设计方案,并说明了系统改造的硬件设备,软件设计的思路和方法及联合调试的过程。关键词:造粒机,PLC(可编程序控制器),HMI(人机界面)基于PLC及HMI的造粒机控制系统的设计3第一章序言随着现代技术的发展与革新,工业控制系统更快地向简单化、系统化、自动化的方向发展。以程序控制取代以往的继电器控制,更加的简单和方便使用。此外,更具有人性化的及多元化的发展。PLC、人机界面、变频器等将更快的取代继电器及接触器的控制领域。1.1PLC的其本概念与基本结构PLC(可编程序控制器)是一种数字运算操作的电子系统,专为在工业环境下应用而设计,主要由CPU模块、输入模块、输出模块和编程器组成。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字化、模拟式的输入及输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于使工业控制系统形成一个整体,易于扩充其功能的原则设计。1.2PLC的特点与应用领域PLC可应用于数字量逻辑控制、运动控制、闭环过程控制、数据处理通信联网等。PLC在许多领域得到了广泛的应用,归根结底是由其性能决定的,它的主要特点为:编程方法简单易学;功能强,性能价格比高;硬件配套齐全,用户使用方便,适应性强;可靠性高,抗干扰能力强;系统的设计、安装、调试工作量少;维修工作量小,维修方便;体积小,能耗低。1.3人机界面基本概念及应用人机界面(HumanMachineInterface)又称为人机接口,简称为HMI。从广义上说,HMI泛指计算机与操作人员交换信息设备。在控制领域,HMI一般特指用于操作人员与控制系统之间进行对话和相互作用的专用设备。人机界面是按工业现场环境应用来设计的,正面的防护等级为IP65,背面的防护等级为IP20,坚固耐用,其稳定性和可靠性与PLC相当,能在恶劣的工业环境中长时间连续运行,因此人机界面是PLC的最佳搭档。人机界面在各领域得到了广泛应用,如过程可视化;操作员对过程的控江苏信息职业技术学院毕业设计报告4制;显示报警;记录功能;输出过程值和报警记录;过程和设备的参数管理等。基于PLC及HMI的造粒机控制系统的设计5第二章造粒机控制系统构成与功能分析用PLC(可编程序控制器)及HMI(人机界面)工业控制系统代替以往的继电器和接触器控制系统,实现造粒系统的可视化、可调化以及可视化控制。通过数字量以及模拟量的控制,达到准确以及精确的要求。采用PID实现过程控制,实现造粒过程的手动与自动的顺序控制。对温度的采集和水位的检测,进行实时的监控与显示。2.1造粒系统结构如图2-1所示为造粒系统的结构图,其组成部件在图中标明。对于本系统而言,启动后首先干燥机、风机启动,对烘干做准备;其次水泵启动,为切粒提供水源;然后水下切粒机运转,开始切粒;最后液压站电机动作,打开开车DV阀,物料就可以通过切头,进行切粒。图2-1造粒系统结构图2.2造粒系统的控制功能的要求1、通过HMI触摸屏实现造粒系统的控制及监控。江苏信息职业技术学院毕业设计报告62、系统具有手动和自动控制。3、系统可以实现电机的顺序启动与顺序停机,以及电磁换向气阀的换向。4、在手动状态,按下各自的启动按钮,对应其电机启动。按下其停机按钮对应的电机停机。5、在自动状态,按下启动按钮(切料电机的启动按钮),各电机按顺序自行启动。按下停机按钮(切料电机的停机按钮),各电机按顺序自行停机。2.3造粒系统技术参数的要求1、通过HMI触摸屏可以进行温度的采集、显示及设定,对温度实现可知、可观、可设定的控制功能。2、实现温度的控制,使其在设定值上下波动。3、对水位进行检测,判断是缺水、低水位还是高水位状态。4、可以对切料电机的转速显示以及控制转速。2.4造粒系统设计分析1、明确系统所要达到的功能、动作流程以及技术要求。2、硬件的设计,包括PLC的选型、HMI触摸屏的选择,以及变频器、温度传感器(热电偶)、压力变送器、电磁换向气阀等的选择等。3、上位机的组态设计。4、程序设计,包括系统的工作过程分析和程序设计框图,I\O的分配,PLC程序的编写,控制程序的清单及注释。5、其他元件的选择及功能调试。基于PLC及HMI的造粒机控制系统的设计7第三章造粒机系统的硬件设计3.1造粒系统的工作流程图3-1造粒机工作示意总图图3-2造粒机切料部分俯视图如图3-1与图3-2所示,造粒机工作流程可简述为四个部分:1、启动后,首先烘干电机工作,将干燥箱烘干,防止由于上次操作有残余液体存在影响本次操作。2、供水电机带动水泵工作,冷水阀打开,将水箱中的水送至冷水管,输送至高水位低水位低位报警排水
本文标题:plc-hmi
链接地址:https://www.777doc.com/doc-5093104 .html