您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 会议纪要 > 浅析常微分方程的常数变易法
2012.07(,010051):;;;:2012-06-12:2012-07-12:,,,,,,,。,,。:0,,..,,,。。,,,,。,C,。,。1:y'+P(x)y=Q(x)(1),P(x)Q(x)x,Q(x)。Q(x)=0,(1):y'+P(x)y=0(2)[1]。(1),。2[1]:(2),:y=Ce-乙P(x)dx(3)C。CC(x),(1),C(x),,:y=C(x)e-乙P(x)dx(4)(1),:y'+P(x)y=C'(x)e-乙P(x)dx-C(x)P(x)e-乙P(x)dx+C(x)P(x)e-乙P(x)dx=C'(x)e-乙P(x)dx=Q(x):C'(x)=Q(x)e乙P(x)dx:C(x)=乙Q(x)e乙P(x)dxdx+CC,C(x)(4),(1):髽2012.07y=e-乙P(x)dx[乙Q(x)e乙P(x)dxdx+C](5),,。,,,CC(x),?,。3(1),“”,[2]?(1):dyy=Q(x)ydx-P(x)dx,:乙dyy=lny=乙Q(x)ydx-乙P(x)dx(6)(6)y,x,x,F(x),:lny=F(x)-乙P(x)dxy=eF(x)·e-乙P(x)dx(7)C(x)=eF(x),(7):y=C(x)e-乙P(x)dx,(2)(3)CC(x),(1)。“”。1y'+2ytanx=3x2cos2x。:。:y'+2ytanx=0。1ydy=-2tanxdx,:lny=2lncosx+lnC:y=Ccos2xy=C(x)cos2x,:y'=C'(x)cos2x-2C(x)cosxsinxy,y',:y'+2ytanx=C'(x)cos2x=3x2cos2x:C'(x)=3x2C(x)=x3+C,,:y=(x3+C)cos2xC。4,[3]?,。:y″+py′+qy=f(x)(8),pq,f(x)。f(x)=0,(8):y″+py′+qy=0(9)[1]。(9):y=C1y1(x)+C2y2(x)(10)C1,C2,y1(x)y2(x)(9)。C1,C2C1(x)C2(x),(8),C1(x)C2(x)。,:y=C1(x)y1(x)+C2(x)y2(x)(11):y′=C1′(x)y1(x)+C1(x)y1′(x)+C2′(x)y2(x)+C2(x)y2′(x)(12)C1(x)C2(x),:C1′(x)y1(x)+C2′(x)y2(x)=0(12):y′=C1(x)y1′(x)+C2(x)y2′(x)(13):y″=C1′(x)y1′(x)+C1(x)y1″(x)+C2′(x)y2′(x)+C2(x)y2″(x)(14)(11)、(13)(14)(8),C1(x)[y1″(x)+py1′(x)+qy1(x)]+C2(x)[y2″(x)+py2′(x)+qy2(x)]+C1′(x)y1′(x)+C2′(x)y2′(x)=f(x)y1(x)y2(x)(9),:C1′(x)y1′(x)+C2′(x)y2′(x)=f(x)(11)(8),C1(x)C2(x)髾2012.07AnalysisofVariationofConstantsMethodofOrdinaryDifferentialEquationsGAOFei-fei(CollegeofStatisticsandMathematics,InnerMongoliaUniversityofFinanceandEconomics,Hohhot010051)Keywords:OrdinaryDifferentialEquations;VariationofConstantsMethod;GeneralSolution;SpecialSolutionThevariationofconstantsmethodisaneffectivewaytosolvethefirst-orderlinearnon-homo-geneousdifferentialequation,butmosttextbooksonlyexplaintheuseofmethod,didnotgivetheoriginofthismethod.Discussestheoriginofthevariationofconstantsmethod,promotesandenhancestheunderstandingandgraspofthevariationofconstantsmethod.Abstract::C1′(x)y1(x)+C2′(x)y2(x)=0C1′(x)y1′(x)+C2′(x)y2′(x)=f(x!)(15)C1′(x)C2′(x),y1(x)y2(x),C1′(x)C2′(x),C1(x)C2(x),(8)。(8)(10)。2y″-2y′+y=xex:。r2-2r+1=0r1=r2=1,:y=(C1+C2x)exC1,C2。:y=C1(x)ex+C2(x)xex(15),:C1′(x)+xC2′(x)=0C1′(x)+C2′(x)(1+x)=!x:C1′(x)=-x2,C2′(x)=x:C1(x)=-13x3,C2(x)=12x2:y=-13x3ex+12x3ex=16x3ex:y=(C1+C2x+16x3)exC1,C2。(8),。,(15),C1′(x)C2′(x)C1(x)C2(x),,。,。[1].(3)[M].:,1978[2].[J].,1999,S2[3].[J].(),1991,02趤趭
本文标题:浅析常微分方程的常数变易法
链接地址:https://www.777doc.com/doc-5130552 .html