您好,欢迎访问三七文档
RLC并联谐振例题[例3.16]在图3.30所示线圈与电容器并联电路,已知线圈的电阻R=10Ω,电感L=0.127mH,电容C=200pF。求电路的谐振频率0f和谐振阻抗0Z。图3.30题图解:谐振回路的品质因数801020010127.01011123CLRQ因为回路的品质因数Q1,所以谐振频率Hz10Hz1020010127.0π21π2161230LCf电路的谐振阻抗k64106410803220RQCRLZ对于复杂的交流电路,可以象直流电路一样,应用电源等效变换法、节点电位法、支路电流法、叠加原理、等效电源定理等来计算。所不同的是,电压和电流要用相量来表示,电路的参数要用复数来表示。[例3.17]图3.31所示电路中,已知)45.2(,)33(,)616.3(321jZjZjZ,电源电压为30220.U,试求:(1)电路中电流及各复阻抗电压,(2)电路的用功功率。解:(1)电路的复阻抗为321ZZZZ3010)566.8()45.233616.3(jjjj电路中的电流为AAZUI022301030220..即tAisin222各负阻抗的电压为VVjIZU2.6216.149022)616.3(.11.VVjIZU4528.93022)33(.22.VVjIZU5884.103022)45.2(.33.(2)电路的复功率为AVjAVAVIUS)242056.4191(30484002230220.*.即var2420,56.4191,4840QWPAVS图3.31复阻抗的串联图3.32复阻抗的串并联[例3.18]如图3.32,图中0220.U,求.3.2.1III、、。4,)22(,)11(321jZjZjZ+I2I3I11Ωj2Ω2Ω+I2I3I1j1Ω1Ωj2Ω2Ω31.11099.5154224221132321jjjjjjZZZZZZA31.1115.4331.11099.502201ZUIA31.5602.6131.1115.43422413232jjjIZZZIA69.7815.4331.1115.434222213223jjjIZZZI[例3.19]电路如图3.33所示,试列写其相量形式的回路电流方程和节点电压方程。图3.33图解回路法:6S1II3S2IIis6C2RisC3us1L4+–i1i2i31S2541423542)j()j1j()j1j(UIRLILCIRLC节点法:图3.34图解11SUU33424212j1)j1j(jSIULULCUC635424)1j1(j1SIURLULis6C2R5is3C3us1L4+–
本文标题:RLC并联谐振例题
链接地址:https://www.777doc.com/doc-5152563 .html