您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 不等式与不等式组知识点
不等式与不等式组知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。4.解不等式:求不等式的解集的过程,叫做解不等式。5.用数轴表示不等式的解集。二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。例:1.已知不等式3x-a≤0的正整数解恰是1,2,3,则a的取值范围是。2.已知关于x的不等式组1250xax无解,则a的取值范围是。3.不等式组0221042xx的整数解为。4.如果关于x的不等式(a-1)xa+5和2x4的解集相同,则a的值为。5.已知关于x的不等式组01234axxx的解集为2x,那么a的取值范围是。6.当x时,代数式52x的值不大于零7.若x1,则22x0(用“”“=”或“”号填空)8.不等式x271,的正整数解是9.不等式x10a的解集为x3,则a10.若abc,则不等式组cxbxax的解集是11.若不等式组3212bxax的解集是-1x1,则)1)(1(ba的值为12.有解集2x3的不等式组是(写出一个即可)13.一罐饮料净重约为300g,罐上注有“蛋白质含量6.0”其中蛋白质的含量为_____g14.若不等式组3xax的解集为x3,则a的取值范围是三、一元一次不等式(重点)1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2.解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1例:一、判断题(每题1分,共6分)1、a>b,得a+m>b+m()2、由a>3,得a>23()3、x=2是不等式x+3>4的解()4、由-21>-1,得-2a>-a()5、如果a>b,c<0,则ac2>bc2()6、如果a<b<0,则ba<1()二、填空题(每题2分,共34分)1、若a<b,用“>”号或“<”号填空:a-5b-5;-2a-2b;-1+2a-1+2b;6-a6-b;2、x与3的和不小于-6,用不等式表示为;3、当x时,代数式2x-3的值是正数;4、代数式41+2x的不大于8-2x的值,那么x的正整数解是;5、如果x-7<-5,则x;如果-2x>0,那么x;6、不等式ax>b的解集是x<ab,则a的取值范围是;7、一个长方形的长为x米,宽为50米,如果它的周长不小于280米,那么x应满足的不等式为;8、点A(-5,y1)、B(-2,y2)都在直线y=-2x上,则y1与y2的关系是;9、如果一次函数y=(2-m)x+m的图象经过第一、二、四象限,那么m的取值范围是;四、一元一次不等式组(难点)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。3、求不等式组的解集的过程,叫做解不等式组。4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。例:一、选择题1.下列不等式组中,是一元一次不等式组的是()A.2,3xxB.10,20xyC.320,(2)(3)0xxxD.320,11xxx2.下列说法正确的是()A.不等式组3,5xx的解集是5x3B.2,3xx的解集是-3x-2C.2,2xx的解集是x=2D.3,3xx的解集是x≠33.不等式组2,3482xxx的最小整数解为()A.-1B.0C.1D.44.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3x5B.-3x5C.-5x3D.-5x-35.不等式组20,30xx的解集是()A.x2B.x3C.2x3D.无解二、填空题6.若不等式组2,xxm有解,则m的取值范围是______.7.已知三角形三边的长分别为2,3和a,则a的取值范围是_____.8.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_____个儿童,分_____个橘子.9.若不等式组2,20xabx的解集是-1x1,则(a+b)2006=______.三、解答题10.解不等式组2(2)4,(1)10(2)32xxxx11.若不等式组1,21xmxm无解,求m的取值范围.12.为节约用电,某学校于本学期初制定了详细的用电计划.如果实际每天比计划多用2度电,那么本学期用电量将会超过2530度;如果实际每天比计划节约了2度电,那么本学期用电量将会不超过2200度.若本学期的在校时间按110天计算,那么学校每天计划用电量在什么范围内?易错点分析:易错点1:误认为一元一次不等式组的“公共部分”就是两个数之间的部分.例1解不等式组x-1>0,①x+2<0.②错解:由①,得x>1,由②,得x<-2,所以不等式组的解集为-2<x<1.错因剖析:解一元一次不等式组的方法是先分别求出不等式组中各个不等式的解集,再利用数轴求出这些不等式解集的公共部分.此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集).实际上,这两部分没有“公共部分”,也就是说此不等式组无解,而所谓“公共部分”的解是指“两线重叠”的部分.此外,有些同学可能会受到解题顺序的影响,把解集表示成1<x<-2或-2<x>1等,这些都是错误的.正解:由①,得x>1.由②,得x<-2,所以此不等式组无解.易错点2:误认为“同向解集哪个表示范围大就取哪个”.例2解不等式组5x+12>6-3x,①4+x3-5>2-2(1+x)3.②错解:解不等式①,得x>-34.解不等式②,得x>5.由于x>-34的范围较大,所以不等式组的解集为x>-34.错因剖析:本例错解中,由于对不等式组的解集理解得不深刻,在根据两个解集的范围确定不等式组的解集时,形成错误的认识.其实在求两个一元一次不等式组成的不等式组的解集时,可归纳为以下四种基本类型(设a<b),①x>a,x>b,②x<a,x>b,③x>a,x<b,④x<a,x>b.利用数可确定它们的解集分别为①x>b,②x<a,③a<x<b,④空集.也可以用下面的口诀来帮助记忆,“同大取大,同小取小,大小小大中间取,大大小小取不了(空集)”.正解:解不等式①,得x>-34.解不等式②,得x>5.所以不等式组的解集为x>5.易错点3:混淆解一元一次不等式组和解二元一次方程组的方法.例3解不等式组x2-2(x+3)≤11,①3x2+2(x+3)≤3.②错解:由①+②,得2x≤14,即x≤7,所以不等式组的解集为x≤7.错因剖析:本例错在将解一元一次不等式组和解二元一次方程组的方法混淆,误将解二元一次方程组中的加减消元法用在解一元一次不等式组中.产生此类错误的根本原因是没有正确区分解一元一次不等式组和解二元一次方程组的不同点,(1)解二元一次方程组时,两个方程不是单独存在的;(2)由两个一元一次不等式组成的不等式组的解集,可归纳为“独立解,集中到”,即独立地解不等式组中的每一个不等式组中的每一个不等式,在解的过程中,各不等式彼此不发生关系,“组”的作用在最后,即每一个不等式的解集都要求出来后,再利用数轴从“公共部分”的角度去求“组”的解集.正解:由不等式①,得32x≥-17,即x≥-343.由不等式②,得72x≤-3,即x≤-67.所以原不等式组的解集为-343≤x≤-67.易错点4:在去分母时,漏乘常数项.例4解不等式组2x-3<1,①x-12+2≥-x.②错解:由①,得x<2.在x-21+2≥-x的两边同乘2,得x-1+2≥-2x.于是有x≥-13,所以原不等式组的解集为2>x≥-13.错因剖析:解一元一次不等式组,需要先求出每一个不等式的解,最后找出它们的公共部分.对不等式进行变形时,一定要使用同解变形,不然就容易出错.本例的解答过程中没有掌握不等式的运算性质,在去分母时漏乘了中间的一项.此外,还要注意在表示“大小小大中间取”这类不等式的解集时应按一般顺序,把小的那个数放在前面,大的那个数放在后面,用“<”连接.正解:由①,得x<2.在x-12+2≥-x的两边同乘2,得x-1+4≥-2x.于是有x≥-1,所以原不等式组的解集为-1≤x<2.易错点5:忽视不等式两边同乘(或除以)的数的符号,导致不等式方向出错.例5解关于x的不等式(12-a)x>1-2a.错解:去分母,得(1-2a)x>2(1-2a).将不等式两边同时除以(1-2a),得x>2.错因剖析:在利用不等式的性质解不等式时,如果不等式两边同乘(或除以)的数是含字母的式子,应注意讨论含字母的式子的符号.本例中不等式两边同乘(或除以)的(1-2a),在不确定取值符号的情况下进行约分,所以出错.正解:将不等式变形,得(1-2a)x>2(1-2a).(1)当1-2a>0时,即a<12时,x>2;(2)当1-2a=0时,即a=12时,不等式无解;(3)当1-2a<0时,即a>12时,x<2.例6如果关于x的不等式(2a-b)x+a-5b>0的解集是x<107,则关于x的不等式ax>b的解集是_________.错解:因为不等式(2a-b)x+a-5b>0的解集是x<107,所以5b-a2a-b=107,则有2a-b=7,5b-a=10,解得a=5,b=3.从而知ax>b的解集是x>35.错因剖析:本题错因有两个,一是忽视了原不等式的不等号方向与解集的不等号方向正好相反;二是对含有字母系数的不等式没有根据解集的情况确定字母系数的取值范围,所以在解题时错误得出2a-b=7,5b-a=10,解得a=5,b=3.从而错误得到ax>b的解集是x>35.正解:由不等式(2a-b)x+a-5b>0的解集是x<107,得2a-b<0,5b-a2a-b=107,解得a<0,ba=35.所以ax>b的解集是x<35.易错点6:寻找待定字母的取值范围时易漏特殊情况.例7若关于x的不等式组5-2x≥-1,x-a>2无解,则a的取值范围是________________.错解:由5-2x≥-1,x-a>0,得x≤3,x>a.又因为不等式组无解,所以a的取值范围是a>3.错因剖析:由已知不等式的解集确定不等式组的解集时,可按“同大取大,同小取小,大小小大中间取,大大小小取不了”的基本规律求解,但当已知不等式组的解集而求不等式的解集中待定字母取值范围时则不能完全套用此规律,还应考虑特例,即a=3,有x≤3及x>3,而此时不等式组也是无解的.因此,本题错在没有考虑待定字母的取值范围的特殊情
本文标题:不等式与不等式组知识点
链接地址:https://www.777doc.com/doc-5153043 .html