您好,欢迎访问三七文档
第31讲┃弧长、扇形、圆锥的计算问题第31讲┃考点聚焦考点聚焦考点1圆的周长与弧长公式圆的周长若圆的半径是R,则圆的周长C=________弧长公式若一条弧所对的圆心角是n°,半径是R,则弧长l=________.在应用公式时,n和180不再写单位2πRnπR180第31讲┃考点聚焦考点2扇形的面积公式扇形面积(1)S扇形=______(n是圆心角度数,R是半径);(2)S扇形=______(l是弧长,R是半径)弓形面积S弓形=S扇形±S△nπR236012lR第31讲┃考点聚焦考点3圆锥的侧面积与全面积圆锥简介(1)h是圆锥的高;(2)a是圆锥的母线,其长为侧面展开后所得扇形的________;(3)r是底面半径;(4)圆锥的侧面展开图是半径等于________长,弧长等于圆锥底面________的扇形侧面积S侧=________全面积S全=S侧+S底=πra+πr2半径母线周长πra第31讲┃归类示例归类示例►类型之一计算弧长命题角度:1.已知圆心角和半径求弧长;2.利用转化思想求弧长.第31讲┃归类示例[2012·广安]如图31-1,Rt△ABC的边BC位于直线l上,AC=3,∠ACB=90°,∠A=30°,若Rt△ABC由现在的位置向右无滑动翻转,当点A第3次落在直线l上时,点A所经过的路线的长为________(结果用含π的式子表示).图31-1(4+3)π第31讲┃归类示例[解析]根据含30°角的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°.点A先是以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线l上时,点A所经过的路线的长.第31讲┃归类示例∵Rt△ABC中,AC=3,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°.∵Rt△ABC在直线l上无滑动地翻转,且点A第3次落在直线l上时,有3个AA1的长,2个A1A2的长,∴点A经过的路线长=120π×2180×3+90π×3180×2=(4+3)π.►类型之二计算扇形面积第31讲┃归类示例命题角度:1.已知扇形的半径和圆心角,求扇形的面积;2.已知扇形的弧长和半径,求扇形的面积.第31讲┃归类示例[2012·泰州]如图31-2,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算).图31-2第31讲┃归类示例[解析](1)根据图形平移及旋转的性质画出△A1B1C1及△A1B2C2即可;(2)将△ABC向下平移4个单位AC所扫过的面积是以4为底,以2为高的平行四边形的面积;将△ABC向右平移3个单位,AC所扫过的面积是以3为底,以2为高的平行四边形的面积;当△A1B1C1绕点A1顺时针旋转90°到△A1B2C2时,A1C1所扫过的面积是以A1为圆心,以22为半径,圆心角为90°的扇形的面积,再减去重叠部分的面积.第31讲┃归类示例解:(1)如图;(2)由平移,得A1C1∥B1E∥AC,A1C1=B1E=AC,∴四边形ACEB1、四边形A1C1EB1都是平行四边形,∴线段AC扫过区域的面积为S▱ACEB1+S▱A1C1EB1+S扇形C2A1B1=4×2+3×2+45×π×(22)2360=14+π.第31讲┃归类示例求不规则图形的面积,常转化为易解决问题的基本图形,然后求出各图形的面积,通过面积的和差求出结果.►类型之三圆锥的侧面积和全面积的计算第31讲┃归类示例命题角度:1.圆锥的母线长、底面半径等计算;2.圆锥的侧面展开图的相关计算.第31讲┃归类示例[2011·宁波]如图31-3,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得的几何体的表面积为()图31-3A.4πB.42πC.8πD.82πD第31讲┃归类示例[解析]过C作CO⊥AB,则OC=2,Rt△ABC绕边AB所在直线旋转一周,则所得的几何体的表面积为2×OC×ACπ=2×2×22π=82π.►类型之四用化归思想解决生活中的实际问题第31讲┃归类示例命题角度:1.用化归思想解决生活中的实际问题;2.综合利用所学知识解决实际问题.第31讲┃归类示例[2012·山西]如图31-4是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()图31-4A.12π-923米2B.π-923米2C.6π-923米2D.6π-93米2C第31讲┃归类示例[解析]先根据半径OA长是6米,C是OA的中点可知OC=12OA=3,再在Rt△OCD中,利用勾股定理求出CD的长,根据锐角三角函数的定义求出∠DOC的度数,由S阴影=S扇形AOD-S△DOC,即可得出结论.∵弧AB的半径OA长是6米,C是OA的中点,第31讲┃归类示例∴OC=12OA=12×6=3(米).∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6米,OC=3米,∴CD=OD2-OC2=62-32=33(米).∵sin∠DOC=CDOD=336=32,∴∠DOC=60°.∴S阴影=S扇形AOD-S△DOC=60×π×62360-12×3×33=6π-923(米2).
本文标题:(新课标)2014届中考数学查漏补缺第一轮基础复习 第31讲 弧长、扇形、圆锥的计算问题课件 华东师
链接地址:https://www.777doc.com/doc-5163371 .html