您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 机械视觉论文概述综述
绪论机器视觉是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等多个领域的交叉学科。它不仅是人眼的延伸,更重要的是具有人脑的一部分功能。近年来,随着计算机技术尤其是多媒体技术和数字图像处理及分析理论的成熟,以及大规模集成电路的迅速发展,机器视觉技术得到了广泛的应用研究,取得了巨大的经济与社会效益。一、机器视觉的研究背景“作为一项关键性的自动化技术,机器视觉在发展中国家中对经济的现代化非常重要。为了在世界市场中进行竞争,发展中经济不能无限期的依赖于廉价劳动力。“AIA市场分析员Kellett说。同样地,现代化必须实现高效率、高生产率以及高质量。这也是机器视觉的作用所在,”对机器视觉长期需求这样的趋势是发展中国家实现经济现代化的基础。因此,机器视觉对于世界经济的发展将越来越重要。”传统地来讲,外观检查和质量控制是通过人类专家来完成的。虽然人类在很多情况下可以把这项工作做的比机器更好,但是他们的速度比机器慢,并且很快就会感觉疲倦。此外在一个行业里很难找到或者留住人类专家,他们需要接受培训,而且他们的技能需要花时间去培养。还有些情况就是检测工作往往很乏味或者很困难,甚至对那些训练有素的专家来说也是一样。某些应用中,精确的信息必须被很迅速或者重复地提取和使用(例如目标跟踪和机器人引导)。在一些环境下(例如水下检测,原子能工业,化学工业等)检测可能很困难或者很危险。在这种高要求的情况下,计算机视觉可以很有效的取代人工检测。同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以人大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。半导体行业是最先利用机器视觉技术进行检测的行业,其他行业也随之而来。作为生产机械的OEM的设计工程师,最基本的问题就是:“我是要检测这个部件还是整个这个产品”。检测可以得到高质量的产品,但是也会有这样的事实存在:检测成本或者产品质量要求并不需要这样的检测。比如说牙签,假设每一个装有500个牙签的盒子里有一两个不合恪,大多数人都不会怎么担心。但是对于很多产品,假如前面的盒了里装的不是牙签,而是针头,试想不合格品可能会带来什么样的后果,所以产品功能性的检测都是不可缺少的,即使只是外观检测,要证明内在的品质也必须要做到无缺陷。因此,为了达到这个目的,许多OEM将机器视觉世用到他们将要卖给用户的系统中。机器视觉能够为整个系统增值,表现在三个方面:提高生产效率,提高制造过程的精确性,减少成本。那么,对丁一个设计工程师来说,怎么样才能知道机器视觉是否适合他的系统呢?尽管最早的最基本的机器视觉系统在20世纪70年代引入,工业就将其视为主流应用。这就导致设计工程师要考虑它是否合适他们的应用,同时要考虑利用机器视觉检测的成本与其所能带来的利润。高复杂度产品行业,比如说半导体行业和电子行业,由于它们的复杂性和小型化,从传统上推动着机器视觉市场的发展。但是如今,所有产业,包括自动化、制药、造纸等等都依靠机器视觉系统检测产品以提高产品质量。工业专家们预言:在未来的20年到50年,机器视觉将成为横跨所有行业的通用性技术,几乎所有出产的产品部会由机器视觉系统来检测。机器视觉自起步发展到现在,应经有15年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐步完善和发展的。由于机器视觉系统可以快速获得大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统也广泛地应用于工况监视、成品检验和质量控制等领域。使用机器视觉系统有以下五个主要原因:精确性一由于人眼有物理条件的限制,在精确性上机器有明显的优点。即使人眼依靠放大镜或显微镜来检测产品,机器仍然会更加精确,因为它的精度能够达到千分之一英寸。重复性一机器可以以相同的办法一次一次的完成检测工作而不会感到疲倦。与此相反,人眼每次检测产品时都会有细微的不同,即使产品是完全相同的。速度一机器能够更快的检测产品。特别是当检测高速运动的物体时,比如说生产线上,机器能够提高生产效率。客观性一人眼检测还有一个致命的缺陷,就是情绪带来的主观性,检测结果会随工人心情好坏产生变化,而机器没有喜怒哀乐,检测的结果自然非常可观可靠。成本一由于机器比人快,一台自动检测机器能够承担好几个人的任务。而且机器不需要停顿、不会生病、能够连续工作,所以能够极大的提高生产效率。二、机器视觉的的发展现状与趋势1、机器视觉系统的发展机器人视觉系统按其发展可分为三代。第一代机器人视觉的功能一般是按规定流程对图像进行处理并输出结果。这种系统一般由普通数字电路搭成,主要用于平板材料的缺陷检测。第二代机器人视觉系统一般由一台计算机,一个图像输入设备和结果输出硬件构成。视觉信息在机内以串行方式流动,有一定学习能力以适应各种新情况。第三代机器人视觉系统是目前国际上正在开发使用的系统。采用高速图像处理芯片,并行算法,具有高度的智能和普通的适应性,能模拟人的高度视觉功能。在Roberts之前都是基于二维的,而且多数是采用模式识别的方法完成分类工作的。Roberts首先用程序成功地对三维积木世界进行解释,在之后类似的研究中,Huffman。Clowes以及Waltz等人对积木世界进行了研究并分别解决了由线段解释景物和处理阴影等问题。积木世界的研究反映了视觉早期研究中的一些特点,即从简化的世界出发进行研究。这些工作对视觉研究的发展起了促进作用,但对于稍微复杂的景物便难以奏效。20世纪70年代中期,以Marr,Barrow和Tenebaum等人为代表的一些研究者提出了一整套视觉计算的理论来描述视觉过程,其核心是从图像恢复物体的三维形状。在视觉研究的理论上,以Marr的理论影响最为深远。其理论强调表示的重要性,提出要从不同层次去研究信息处理的问题。对于计算理论和算法实现,他又特别强调计算理论的重要性。这一框架虽然在细节上甚至在主导思想上还存在不完备的方面,许多方面还有很多争议,但至今仍是目前计算机视觉研究的基本框架。进入80年代中后期,随着移动式机器人等的研究,视觉研究与之密切结合,大量引入了空间几何的方法以及物理知识,其主要目标是实现对道路和障碍的识别处理。这一时期引入主动视觉的研究方法,使用了距离传感器,并采用了多传感器融合等技术。2、国内外技术的发展现状国外机器视觉发展的起点难以准确考证,其大致的发展历程是:20世纪50年代提出机器视觉概念,20世纪70年代真正开始发展,20世纪80年代进入发展正轨,20世纪90年代发展趋于成熟,20世纪90年代后高速发展。在机器视觉发展的历程中,有3个明显的标志点,一是机器视觉最先的应用来自“机器人”的研制,也就是说,机器视觉首先是在机器人的研究中发展起来的;二是20世纪70年代CCD图像传感器的出现,CCD摄像机替代硅靶摄像是机器视觉发展历程中的一个重要转折点;三是20世纪80年代CPU、DSP等图像处理硬件技术的飞速进步,为机器视觉飞速发展提供了基础条件。在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板、组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;电子封装技术与设备;丝网,印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路、制造设备、元器件成型设备、电子工模具。机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。国内机器视觉发展的大致历程:真正开始起步是20世纪80年代,20世纪90年代进入发展期,加速发展则是近几年的事情。中国正在成为世界机器视觉发展最活跃的地区之一,其中最主要的原因是中国已经成为全球的加工中心,许许多多先进生产线己经或正在迁移至中国,伴随这些先进生产线的迁移,许多具有国际先进水平的机器视觉系统也进入中国。对这些机器视觉系统的维护和提升而产生的市场需求也将国际机器视觉企业吸引而至,国内的机器视觉企业在与国际机器视觉企业的学习与竞争中不断成长1990年以前,仅仅在大学和研究所中有一些研究图像处理和模式识别的实验室。20世纪90年代初,一些来自这些研究机构的工程师成立了他们自己的视觉公司,开发了第一代图像处理产品,例如基于ISA总线的灰度级图像采集卡,和一些简单的图像处理软件库,他们的产品在大学的实验室和一些工业场合得到了应用,人们能够做一些基本的图像处理和分析工作。1990-1998年为初级阶段。期间真正的机器视觉系统市场销售额微乎其微。主要的国际机器视觉厂商还没有进入中国市场。自从1998年,越来越多的电子和半导体工厂,包括香港和台湾投资的工厂,落户广东和上海。带有机器视觉的整套的生产线和高级设备被引入中国。1998-2002年定义为机器视觉概念引入期。在此阶段,许多著名视觉设备供应商,例如,北京和利时电机技术有限公司曾经被五家外国公司选做主要代理商或解决方案提供商。从2002年至今,我们称之为机器视觉发展期,中国机器视觉呈快速增长趋势。在国内,以上行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,只是低端方面的应用,曾导致以上很多行业的应用几乎空白。目前在我国随着配套基础建设的完善,技术、资金的积累,各行各业对采用图像和机器视觉技术的工业自动化、智能化需求开始广泛出现,国内有关大专院校、研究所和企业近两年在图像和机器视觉技术领域进行了积极思索和大胆的尝试,逐步开始了工业现场的应用。其主要应用于制药、印刷、矿泉水瓶盖检测等领域。这些应用大多集中在如药品检测分装、印刷色彩检测等。真正高端的应用还很少,因此,以上相关行业的应用空间还比较大。当然、其他领域如指纹检测等等领域也有着很好的发展空间。3、机器视觉的发展趋势(1)技术方面的趋势是数字化、实时化、智能化图像采集与传输的数字化是机器视觉在技术方面发展的必然趋势。更多的数字摄像机,更宽的图像数据传输带宽,更高的图像处理速度,以及更先进的图像处理算法将会推出,将会得到更广泛的应用。这样的技术发展趋势将使机器视觉系统向着实时性更好和智能程度更高的方向不断发展。(2)功能多和产品小型化更多功能的实现主要是来自于计算能力的增强,更高分辨率的传感器(10Mpixels),更快的扫描率(500次/s)和软件功能的提高.PC处理器的速度在得到稳步提升的同时,其价格也在下降,这推动了更快的总线的出现,而总线又反过来允许具有更多数据的更大图像以更快的速度进行传输和处理.产品的小型化趋势让这个行业能够在更小的空间内包装更多的部件,这意味着机器视觉产品变得更小,这样他们就能够在厂区所提供的有限空间内应用.例如在工业配件上LED已经成为主导光源,它的小尺寸使成像参数的测定变得容易,他们的耐用性和稳定性非常适用于工厂设备。(3)基于嵌入式的产品将取代板卡式产品从产品本身看,机器视觉会越来越趋于依靠PC技术。且基于嵌入式的产品将逐渐取代板卡式产品,这是一个不断增长的趋势。主要原因是随着计算机技术和微电子技术的迅速发展,嵌入式系统应用领域越来越广泛,尤其是其具备低功耗技术的特点得到人们的重视。另外,嵌入式操作系统绝大部分是以C语言为基础的,使用高级语言的优点是可以提高工作效率,缩短开发周期,更主要的是开发出的产品可靠性高、可维护性好、便于不断完善和升级换代等。(4)市场份额迅速扩大目前,在我国机器视觉技术还不太成熟,主要靠进口国外整套系统,价格比较昂贵。随着技术的进步和市场竞争的激烈,价格下降已成必然趋势,这意味着机器视觉技术将逐渐被接受。另外,机器视觉市场将不断增大。一方面已经采用机器视觉产品的应用领域,对机器视觉产品的的依赖性将更强;另一方面机器视觉产品将应用到其他更广的领域。(5)行业方面发展更加迅速机
本文标题:机械视觉论文概述综述
链接地址:https://www.777doc.com/doc-5165072 .html