您好,欢迎访问三七文档
万物皆有秩序——《几何原本》读后感几何,是空间之秩序,是物质之规律,是造化之解析,是宇宙之始基,是逻辑之诗篇,是理性之美感。——题记几何证明的引入,是初中数学的一个分水岭,许多同学的成绩出现了明显的下滑,也逐渐产生了对数学的恐惧,这不再只是一门计算的课程,而要开始与那些老师口中“大同小异”但学生眼中“大相径庭”的各类几何图形作斗争。学生们把对几何的困惑归结为“没感觉”,甚至开始有了遇到几何题就放弃的思想;一些家长也开始“妖魔化”几何,在孩子还没学几何时就开始不断吓唬他们:“不要以为数学很简单,等以后学了几何就困难了”云云。那究竟几何是否真的如此难学?还有无挽回学生学习几何的热情的可能?我想回到几何学的本源,从两千多年前伟大的数学家欧几里得的巨著《几何原本》中去寻找答案。欧几里得,是一个熟悉的名字,常常出现在与数学有关的各个角落,我也曾在课堂上为学生演示“勾股定理”的证明时,使用过“欧几里得证法”;这也是一个陌生的名字,他的生平已经失传,仅存的著作便是这部《几何原本》,但仅凭这部著作便足以让他被冠以“几何之父”的头衔。中国古代的数学体系以算术、代数为主,重视应用,如《九章算术》提出的谷物粮食按比例分配的算法、如何解决合理摊派赋税等问题。而古希腊的数学体系脱胎于哲学,对计算类问题涉及不深,旨在寻找宇宙的基本构成和数量关系。也许是因为古希腊的数学家们在面对浩瀚的星空时感受到了自身的渺小,所以想藉由建立起物质与精神世界的确定体系来获得些许自信。于是通过自明的简单公理进行演绎推理得出结论的方法诞生了,逻辑的三段论由亚里士多德提出,并被欧几里得应用于实际知识体系构建,这也是我们现在所运用的几何证明的推理演绎法的起源。书中提出了五条公设和五条公理,这些都是无需证明的显在事实,如“凡直角都相等”、“整体大于部分”……这些都不需要什么数学基础,只要稍有生活常识的人都很明了。就是靠着这些简单的基础原理,通过演绎推理的方法,在本书中论证了465个命题。我在此不愿过多赘述这些论证的过程,因为这并不是一本数学教本,我更愿把它作为一本建立秩序的书。万物都要依托空间而存在,《几何原本》是一部建立空间秩序最久远的方案之书,也意味着为万物的秩序建立树立了标榜。几何中的空间秩序是客观存在的,欧几里得不满足于发现这些秩序,更试图去证明这些秩序的正确性。我们生活中常有这样的现象:我们常被告知要遵守某些秩序,但在不明就里时我们会有一种抵触情绪;一旦我们了解了这些秩序的由来或原因后,往往会更愿意遵守。一个简单的例子,有些国家习惯靠左行,有些国家习惯靠右行,仅仅以“因为大家都这样所以你也要这样”来解释实在太牵强,一些人尤其是孩子就不容易接受。如果告诉了他们英国人靠右行因为骑士骑马习惯左脚先上马镫,所以要靠路左上马;而法国本来也是这个习惯,后来拿破仑大革命后,为了彻底打破贵族习俗,开创了靠右行的习惯并沿用至今,那么知道这些后,有理可循,自然更容易接受这些秩序。所以有理有据的秩序才更容易被人接受,这个道理早在两千多年前就被欧几里得表述在了《几何原本》中。再联系到我们几何的教学,一些学生记不住定理或者不会用定理,也许也是因为在学习定理的初始阶段,没有向他们阐述清楚定理证明的过程,对定理的证明理解得越透彻,也就会越理解在怎样的情况下更适合运用哪些定理。先学会证明定理,再学会应用它,这就是学习几何的秩序。每个人都有求知欲、都有探索客观世界的意愿、都有对美的向往,因此不应该有人对几何失去兴趣与热情,也不存在对几何“没感觉”,只是有时对几何的理解太浅显,觉得就是认识几个图形、解几道题。通过《几何原本》中由点、线、面、角为万物始基所构筑的空间,我们会发现几何学就是物质世界乃至精神世界的表述方式,她定义了万物的秩序,所以只要你愿意去了解世界,你就会愿意接触几何,就有学习她的动力。同时几何的美不仅仅是图形变幻组合所产生的视觉效果,更蕴含逻辑的最美剧本,而重视几何学的人也不会忽视数学在美学上的意义,因此爱美是爱几何的充要条件。如果还要纠结几何是否难学,我只想说,对优雅事物的欣赏,是一件难事吗?总有学生会问,有没有学习几何的捷径?被托勒密王问到相同的问题时,欧几里得回答:“几何无王者之道。”另一个常被学生问及的问题就是,学了几何之后有什么用能得到什么?这个问题欧几里得同样有他的解答,他对身边的侍从说:“给他三个钱币,因为他想在学习中获取实利。”学习没有一步登天只有脚踏实地;对真理的追寻与求证不是为了功利的索取,而是在培植素养与情怀,这是几何学的秩序,更是人生的箴言。
本文标题:《几何原本》读后感
链接地址:https://www.777doc.com/doc-5172216 .html