您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 最新重点小学奥数之几何五大模型
一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。如上图12::SSab⑶夹在一组平行线之间的等积变形,如下图ACDBCDSS=△△;反之,如果ACDBCDSS△△,则可知直线AB平行于CD。⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。如图,在ABC△中,,DE分别是,ABAC上的点(如图1)或D在BA的延长线上,E在AC上(如图2),则:():()ABCADESSABACADAE△△图1图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::SSSS或者1324SSSS②1243::AOOCSSSS蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。梯形中比例关系(“梯形蝴蝶定理”)①2213::SSab②221324::::::SSSSababab;③梯形S的对应份数为2ab。四、相似模型相似三角形性质:金字塔模型沙漏模型①ADAEDEAFABACBCAG;②22::ADEABCSSAFAG△△。所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方。五、燕尾定理模型S△ABG:S△AGCS△BGE:S△EGCBE:ECS△BGA:S△BGCS△AGF:S△FGCAF:FCS△AGC:S△BCGS△ADG:S△DGBAD:DB典型例题精讲例1一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0.15倍,黄色三角形的面积是21平方厘米。问:长方形的面积是__________平方厘米。例1图例2如图,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DF=DC,且AD=2DE。则两块地ACF和CFB的面积比是__________。例2图【举一反三】两条线段把三角形分为三个三角形和一个四边形,如图所示,三个三角形的面积分别是3,7,7,则阴影四边形的面积是多少?举一反三图【拓展】如图,已知长方形ADEF的面积16,三角形ADB的面积是3,三角形ACF的面积是4,那么三角形ABC的面积是多少?拓展图例3如图,将三角形ABC的AB边延长1倍到D,BC边延长2倍到E,CA边延长3倍到F。如果三角形ABC的面积等于1,那么三角形DEF的面积是__________。例3图例4如图,在△ABC中,已知M、N分别在边AC、BC上,BM与AN相交于O,若△AOM、△ABO和△BON的面积分别是3、2、1,则△MNC的面积是__________。例4图例5如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD的面积。例5图例6如右图长方形ABCD中,EF=16,F=9,求AG的长。例6图【铺垫】图中四边形ABCD是边长为12cm的正方形,从G到正方形顶点C、D连成一个三角形,已知这个三角形在AB上截得的EF长度为4cm,那么三角形GDC的面积是多少?铺垫图例7如图,长方形ABCD中,E为AD中点,AF与BE、BD分别交于G、H,已知AH=5cm,HF=3cm,求AG。例7图例8如右图,三角形ABC中,BD∶DC=4∶9,CE∶EA=4∶3,求AF∶FB。例8图例9如右图,△ABC中,G是AC的中点,D、E、F是BC边上的四等分点,AD与BG交于M,AF与BG交于N,已知△ABM的面积比四边形FCGN的面积大7.2平方厘米,则△ABC的面积是多少平方厘米?例9图例10如图,在正方形ABCD中,E、F分别在BC与CD上,且CE=2BE,CF=2DF,连接BF,DE,相交于点G,过G作MN,PQ得到两个正方形MGQA和正方形PCNG,设正方形MGQA的面积为S1,正方形PCNG的面积为S2,则S1:S2=______。例10图
本文标题:最新重点小学奥数之几何五大模型
链接地址:https://www.777doc.com/doc-5179043 .html