您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 导弹总体设计《防空导弹主级燃料相对质量因数计算》大作业
导弹总体设计《防空导弹主级燃料相对质量因数计算》大作业班号:_________学号:_________姓名:_________一、要求:1、根据已知条件,采用数值积分法求解相对量运动微分方程组,计算燃料相对质量因数。2、综合运用积分、插值计算等计算方法,采用C、C++,或者Matlab等语言的一种,编制计算程序。二、已知条件:1、分离条件:速度V0=500m/s,时间t0=3s,x方向位置x0=674m,y方向位置y0=329m,初始攻角01.5,初始弹道倾角026。2、气动参数阻力因数(,)xCMa插值表:()Ma2468101.50.04300.05110.06510.08470.11202.10.03600.04360.05580.07360.09732.70.03080.03720.04810.06410.08493.30.02650.03230.04190.05600.07464.00.02220.02720.03560.04780.0644升力因数斜率(,)yCMa插值表:()Ma12468101.50.03020.03040.03060.03090.03110.03132.00.02790.02800.02840.02860.02880.02902.50.02610.02640.02670.02690.02720.02743.00.02470.02480.02510.02540.02570.02593.50.02260.02270.02310.02330.02360.02384.00.02090.02100.02130.02160.02190.0221注:以上攻角单位均为度。3、发动机参数:比冲Is=2156/Nskg;重力加速度g=9.801;推重比2.2P;翼载205880/pNm。4、导引规律:三点法。目标匀速直线等高迎头飞行,420/TVms,15000Tym,(Ty=14200m),034200TDm(0TD=32000m)(弹目斜距)5、大气模型:参见教科书。三、计算思路①插值表的处理1.对于大气参数密度ρ、声速a,都是高度h的单值函数,本次计算采用最方便的线性插值,对于指定高度h,找出上下最接近的两点h1,h2进行计算。2.对于Cx,Cyα它由两个参数决定,采用双线性插值。具体算法如下:将Cx(α,Ma)看作是攻角和马赫数的二元点函数Z(x,y),则对于任意点p(a,b),找出距离a最近的点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),如上图示。先用P点的横坐标在x轴方向(A,B方向)上进行第一次线性插值,计算出E点的值,同样在C,D方向进行第二次插值求出F点的值,最后在y轴方向(E,F方向)用纵坐标进行线性插值求出P点的函数值。②解方程组1.四阶龙格库塔公式:y(i+1)=y(i)+h*(K1+2*K2+2*K3+K4)/6K1=f(x(i),y(i))K2=f(x(i)+h/2,y(i)+hK1/2)K3=f(x(i)+h/2,y(i)+hK2/2)K4=f(x(i)+h,y(i)+hK3)2.三点法导引的相对量运动微分方程组为:2020200ssin12(1)1sin1cotcotsincoscos2(1)1cotcotsxsssTTsTTsssyTRssTTIVCIIdVdPpPIVdydVVyyPgVddddIVqPgyIdyVdPgIdxVdPgIdVdPVCIIPpPgyqqIV0cotcotTTVMaCytqqV此方程组变量较多,但是只有方程1、方程2需要进行复杂的求解运算,其余的方程均可代入上一步的计算结果求得。以μ为自变量,初始μ=0,选定一个步长h,利用已知的初值条件,用龙格库塔法解方程1、方程2,方程3~8可由1、2的结果代入计算求得,经过多次运算求解。具体步骤如下:已知初始参数g=9.801m/s^2,μ=0,Is=2156N*s/kg,P=2.2,p0=5880N/m^2,α0=1.5°,θ=26°,vt=vt0=420m/s,yt0=15000m,dt0=34200m,易得xt0=31569.39345,cotq0=xt0/yt0=2.10462623,h=0.001。1.利用大气参数表计算出当前高度y=y(h)(初值y0=329m)下的密度ρ,声速a;2.利用当前速度(初值v0=500m/s)和声速解方程7计算出当前马赫数Ma;3.解方程3,4,得dx/du,dy/du;4.用龙格库塔法解方程1,得dv/du;5.用龙格库塔法解方程2,得dθ/du;6.将上述方程的结果代入方程5、6、8,解得α、q,t;7.用新值代替旧值重复1~6步骤,判断y=y0时,计算结束。四、计算结果击中目标时,μ=0.346,t=37.49648,x=16993.632,y=15058.591,v=849.348,θ=60.776°,α=5.439°,q=41.289°,xt=17080.872,Ma=2.873.五、C语言计算程序代码#includestdio.h#includestring.h#includemath.h#definePI3.1415926535//圆周率π#defineh0.001//步长#definev0500.0//分离时导弹初速度v0单位:s#definet03.0//分离时刻t0,单位:s//#definex0674.0//#definey0329.0#definealpha01.5*PI/180//攻角α,单位:rad#definetheta026.0*PI/180//俯仰角θ,单位:rad#defineis2156.0//总冲Is,单位:N*s/kg#defineg9.801//重力加速度g,单位:m/s^2#defineP2.2//推重比P#definep05880.0//翼载p0,单位:N/m^2#definevt420.0//飞机速度vt,单位:m/s#defineyt015000.0//飞机初始纵坐标yt,单位:m#definedt034200.0//弹目斜距Dt0,单位:m#definext031569.39345//飞机初始橫坐标xt0,单位:mxt0=sqrt(dt0^2-(yt0-y0)^2)+x0#definecotq02.10462623//初始目标对制导站的航向角的余切,cotq0=xt0/yt0;doubleinter_linear(doublex0,doublex1,doubley0,doubley1,doublex){//线性插值函数doublea0,a1,y;a0=(x-x1)/(x0-x1);a1=(x-x0)/(x1-x0);y=a0*y0+a1*y1;returny;}doubleinterp1(doublex[],doubley[],intn,doublea){//一维线性插值函数doublez;inti=0;for(i=0;i(n-1);i++){if((a=x[i])&&(a=x[i+1]))break;//确定a的位置}z=inter_linear(x[i],x[i+1],y[i],y[i+1],a);returnz;}doubleinterp2(doublex[],doubley[],doublez[6][6],intm,intn,doublea,doubleb){//双线性插值函数inti,j;doublew,w1,w2;for(i=0;i(m-1);i++){//确定a在x轴的位置if((a=x[i])&&(a=x[i+1]))break;}for(j=0;j(n-1);j++){//确定b在y轴的位置if((b=y[j])&&(b=y[j+1]))break;}if(ax[0])i=0;//若给定的点超出范围时,采用线性外推进行插值elseif(ax[m-1])i=m-1;if(by[0])j=0;elseif(by[n-1])j=n-1;w1=inter_linear(x[i],x[i+1],z[i][j],z[i+1][j],a);//在x轴方向进行第一次插值w2=inter_linear(x[i],x[i+1],z[i][j+1],z[i+1][j+1],a);//在x轴方向进行第二次插值w=inter_linear(y[j],y[j+1],w1,w2,b);//在y轴方向进行插值returnw;}intmain(){//*****************************计算用到的参数**************************************doublecx,cya;//阻力系数Cx,升力系数斜率Cyαdoublealpha1[5]={2,4,6,8,10},ma1[5]={1.5,2.1,2.7,3.3,4.0};//Cx插值表中的α向量,Ma向量doublealpha2[6]={1,2,4,6,8,10},ma2[6]={1.5,2.0,2.5,3.0,3.5,4.0};//Cyα插值表中的α向量,Ma向量doublecx0[6][6]={{0.0430,0.0511,0.0651,0.0847,0.1120},\{0.0360,0.0436,0.0558,0.0736,0.0973},\{0.0308,0.0372,0.0481,0.0641,0.0849},\{0.0265,0.0323,0.0419,0.0560,0.0746},\{0.0222,0.0272,0.0356,0.0478,0.0644}};//Cx插值表doublecy0[6][6]={{0.0302,0.0304,0.0306,0.0309,0.0311,0.0313},\{0.0279,0.0280,0.0284,0.0286,0.0288,0.0290},\{0.0261,0.0264,0.0267,0.0269,0.0272,0.0274},\{0.0247,0.0248,0.0251,0.0254,0.0257,0.0259},\{0.0226,0.0227,0.0231,0.0233,0.0236,0.0238},\{0.0209,0.0210,0.0213,0.0216,0.0219,0.0221}};//Cyα插值表doubleyh[23]={0,1000,2000,3000,4000,5000,6000,7000,8000,\9000,10000,11000,12000,13000,14000,15000,\16000,17000,18000,19000,20000,21000,22000};//大气高度y(h)doubleph[23]={1.22505,1.11168,1.00646,0.90913,0.81913,0.73612,0.65969,\0.58950,0.52517,0.46635,0.41270,0.36391,0.31083,0.26549,\0.22675,0.19367,0.16542,0.14128,0.12068,0.10307,0.08803,\0.07487,0.06373};//大气密度表ρ(h)doubleah[23]={340.29,336.43,332.53,328.58,324.58,320.53,316.43,312.27,\308.06,303.79,299.46,295.07,295.07,295.07,295.07,295.07,\295.07,295.07,295.07,295.07,295.07,295.75,296.43};//大气声速表a(h)inti;doublep,a,q,cotq;doublex=6
本文标题:导弹总体设计《防空导弹主级燃料相对质量因数计算》大作业
链接地址:https://www.777doc.com/doc-5180108 .html