您好,欢迎访问三七文档
统计学中的自由度统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的资料的个数,称为该统计量的自由度。统计学上的自由度包括两方面的内容:首先,在估计总体的平均数时,由于样本中的n个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。例如,有一个有4个数据(n=4)的样本,其平均值m等于5,即受到m=5的条件限制,在自由确定4、2、5三个数据后,第四个数据只能是9,否则m≠5。因而这里的自由度υ=n-1=4-1=3。推而广之,任何统计量的自由度υ=n-限制条件的个数。其次,统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有p个参数需要估计,则其中包括了p-1个自变量(与截距对应的自变量是常量1)。因此该回归方程的自由度为p-1。这个解释,如果把“样本”二字换成“总体”二字也说得过去。这个根本解释不了在统计学中,自由度的概念。在一个包含n个个体的总体中,平均数为m。知道了n-1个个体时,剩下的一个个体不可以随意变化。为什么总体方差计算,是除以n而不是n-1呢?方差是实际值与期望值之差平方的期望值,所以知道总体个数n时方差应除以n,除以n-1时是方差的一个无偏估计。
本文标题:统计学中的自由度
链接地址:https://www.777doc.com/doc-5185303 .html