您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 5.3.2命题定理证明课件1
5.3.2命题、定理古店中学吕德品-2-古店中学吕德品七(4)班同学们,你们是最棒的!加油!下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?1、对顶角相等;2、画一个角等于已知角;3、两直线平行,同位角相等;4、a,b两条直线平行吗?5、温柔的李明明;6、玫瑰花是动物;7、若a2=4,求a的值;8、若a2=b2,则a=b。否是否否是否是是√对事情作了判断的语句是否正确?√××-3-古店中学吕德品七(4)班同学们,你们是最棒的!加油!2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。如:画线段AB=CD。判断一件事情的语句叫做命题。注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。如:相等的角是对顶角。命题是由题设(或条件)和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。两直线平行,同位角相等。题设(条件)结论-4-古店中学吕德品七(4)班同学们,你们是最棒的!加油!命题一般都写成“如果…,那么…”的形式。“如果”后接的部分是题设,“那么”后接的部分是结论。如命题:熊猫没有翅膀。改写为:如果这个动物是熊猫,那么它就没有翅膀。注意:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。-5-古店中学吕德品七(4)班同学们,你们是最棒的!加油!指出下列各命题的题设和结论,并改写成“如果……,那么……”的形式。1、对顶角相等;2、内错角相等;3、两平线被第三直线所截,同位角相等;4、3<2;5、同平行于一直线的两直线平行;6、直角三角形的两个锐角互余;7、等角的补角相等;8、正数与负数的和为0。-6-古店中学吕德品七(4)班同学们,你们是最棒的!加油!有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立。正确的命题叫真命题,错误的命题叫假命题。如命题:“如果两个角互补,那么它们是邻补角”就是一个错误的命题。如命题:“如果一个数能被4整除,那么它也能被2整除”就是一个正确的命题。确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法。-7-古店中学吕德品七(4)班同学们,你们是最棒的!加油!下列句子哪些是命题?是命题的,指出是真命题还是假命题?1、猪有四只脚;2、内错角相等;3、画一条直线;4、四边形是正方形;5、你的作业做完了吗?6、同位角相等,两直线平行;7、对顶角相等;8、垂直于同一直线的两直线平行;9、过点P画线段MN的垂线;10、x>2是真命题否是假命题是假命题否是真命题是真命题是假命题否否-8-古店中学吕德品七(4)班同学们,你们是最棒的!加油!1、数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。2、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。公理和定理都可作为判断其他命题真假的依据。-9-古店中学吕德品七(4)班同学们,你们是最棒的!加油!公理举例:经过两点有且只有一条直线。2、线段公理:两点的所有连线中,线段最短。4、平行线判定公理:同位角相等,两直线平行。5、平行线性质公理:两直线平行,同位角相等。1、直线公理:3、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。-10-古店中学吕德品七(4)班同学们,你们是最棒的!加油!同角或等角的补角相等。2、余角的性质:同角或等角的余角相等。4、垂线的性质:①过一点有且只有一条直线与已知直线垂直;5、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。1、补角的性质:3、对顶角的性质:对顶角相等。②垂线段最短。定理举例:-11-古店中学吕德品七(4)班同学们,你们是最棒的!加油!内错角相等,两直线平行。同旁内角互补,两直线平行。6、平行线的判定定理:7、平行线的性质定理:两直线平行,内错角相等。两直线平行,同旁内角互补。定理举例:-12-古店中学吕德品七(4)班同学们,你们是最棒的!加油!课堂小结1、命题:判断一件事情的语句叫命题。2、公理:人们长期以来在实践中总结出来的,并作为判断其他命题真假的根据的命题,叫做公理。3、定理:经过推理论证为正确的命题叫定理。也可作为继续推理的依据。4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推理的方法证明(公理和定理都是真命题);判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例。(1)正确的命题称为真命题,错误的命题称为假命题。(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果…,那么…”的形式。
本文标题:5.3.2命题定理证明课件1
链接地址:https://www.777doc.com/doc-5192979 .html