您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 黄冈中学高考数学10排列组合题库
1黄冈中学高考数学10排列组合题库黄冈中学高考数学知识点敬请去百度文库搜索---“黄冈中学高考数学知识点”---结合起来看看效果更好记忆中理解理解中记忆没有学不好滴数学涵盖所有知识点题题皆精心解答一、选择题1.(2010广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A.36种B.12种C.18种D.48种【解析】分两类:若小张或小赵入选,则有选法24331212ACC;若小张、小赵都入选,则有选法122322AA,共有选法36种,选A.22.(2010北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8B.24C.48D.120【答案】C.w【解析】本题主要考查排列组合知识以及分步计数原理知识.属于基础知识、基本运算的考查.2和4排在末位时,共有122A种排法,其余三位数从余下的四个数中任取三个有3443224A种排法,于是由分步计数原理,符合题意的偶数共有22448(个).故选C.3.(2010北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【答案】B【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识.属于基础知识、基本运算的考查.首先应考虑“0”是特殊元素,当0排在末位时,有299872A(个),当0不排在末位时,有111488488256AAA(个),于是由分类计数原理,得符合题意的偶数共有72256328(个).故选B.4.(2010全国卷Ⅱ文)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)6种(B)12种(C)24种(D)30种答案:C解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数2424CC=36,再求出两人所选两门都相同和都不同的种数均为24C=6,故只恰好有1门相同的选法有24种。5.(2009全国卷Ⅰ理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(D)(A)150种(B)180种(C)300种(D)345种解:分两类(1)甲组中选出一名女生有112536225CCC种选法;(2)乙组中选出一名女生有211562120CCC种选法.故共有345种选法.选D6.(2009湖北卷理)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为.18A.24B.30C.36D【答案】C3【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是24C,顺序有33A种,而甲乙被分在同一个班的有33A种,所以种数是23343330CAA7.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.60B.48C.42D.36【答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有62223AC种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有62223AC种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有22226AA=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有226A=12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有226A=12种排法三类之和为24+12+12=48种。8.(2009全国卷Ⅱ理)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有A.6种B.12种C.30种D.36种解:用间接法即可.22244430CCC种.故选C9.(2009辽宁卷理)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70种(B)80种(C)100种(D)140种【解析】直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.【答案】A10.(2009湖北卷文)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有4A.120种B.96种C.60种D.48种【答案】C【解析】5人中选4人则有45C种,周五一人有14C种,周六两人则有23C,周日则有11C种,故共有45C×14C×23C=60种,故选C11.(2009湖南卷文)某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【B】A.14B.16C.20D.48解:由间接法得32162420416CCC,故选B.12.(2009全国卷Ⅰ文)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150种(B)180种(C)300种(D)345种【解析】本小题考查分类计算原理、分步计数原理、组合等问题,基础题。解:由题共有345261315121625CCCCCC,故选择D。13.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.60B.48C.42D.36【答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有62223AC种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有62223AC种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有22226AA=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有226A=12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有226A=12种排法5三类之和为24+12+12=48种。14.(2009陕西卷文)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为(A)432(B)288(C)216(D)108网答案:C.解析:首先个位数字必须为奇数,从1,3,5,7四个中选择一个有14C种,再丛剩余3个奇数中选择一个,从2,4,6三个偶数中选择两个,进行十位,百位,千位三个位置的全排。则共有11234333216CCCA个故选C.15.(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位[C]A85B56C49D28【答案】:C【解析】解析由条件可分为两类:一类是甲乙两人只去一个的选法有:1227CC42,另一类是甲乙都去的选法有2127CC=7,所以共有42+7=49,即选C项。16.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.360B.188C.216D.96【考点定位】本小题考查排列综合问题,基础题。解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有33222242333AACA种,其中男生甲站两端的有1442223232212AACAA,符合条件的排法故共有188解析2:由题意有2221122222322323242()()188ACACCACAA,选B。17.(2009重庆卷文)12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为()A.155B.355C.14D.13【答案】B解析因为将12个组分成4个组的分法有444128433CCCA种,而3个强队恰好被分在同一组分法有3144398422CCCCA,故个强队恰好被分在同一组的概率为31442444399842128433CCCCACCCA=55。6二、填空题18.(2009宁夏海南卷理)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。解析:3374140CC,答案:14019.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答)【考点定位】本小题考查排列实际问题,基础题。解析:个位、十位和百位上的数字为3个偶数的有:901333143323CACAC种;个位、十位和百位上的数字为1个偶数2个奇数的有:23413332313143323CACCCAC种,所以共有32423490个。20.(2009浙江卷理)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).答案:336【解析】对于7个台阶上每一个只站一人,则有37A种;若有一个台阶有2人,另一个是1人,则共有1237CA种,因此共有不同的站法种数是336种.21.(2009浙江卷文)有20张卡片,每张卡片上分别标有两个连续的自然数,1kk,其中0,1,2,,19k.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010)不小于14”为A,则()PA.14【命题意图】此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平【解析】对于大于14的点数的情况通过列举可得有5种情况,即7,8;8,9;16,17;17,18;18,19,而基本事件有20种,因此()PA1422.(2009年上海卷理)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E____________(结果用最简分数表示).【答案】477【解析】可取0,1,2,因此P(=0)=21102725CC,P(=1)=2110271215CCC,P(=2)=2112722CC,E=0×2112211012110=4723.(2009重庆卷理)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.891B.2591C.489
本文标题:黄冈中学高考数学10排列组合题库
链接地址:https://www.777doc.com/doc-5195372 .html