您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2013年陕西省中考数学试卷(含解析)
双成教育试卷第1/19页2013年陕西省中考数学试卷一、选择题1、下列四个数中最小的数是()A.-2B.0C.-D.52、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()A.B.C.D.3、如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°4、不等式组的解集为()A.x>B.x<-1C.-1<x<D.x>-双成教育试卷第2/19页5、我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8B.77C.82D.95.76、如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<07、如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对8、根据表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-39、如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、双成教育试卷第3/19页DN.若四边形MBND是菱形,则等于()A.B.C.D.10、已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>-5B.x0>-1C.-5<x0<-1D.-2<x0<3二、填空题11、计算:(-2)3+(-1)0=__________.12、一元二次方程x2-3x=0的根是__________.13、请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是__________.B、比较大小:8cos31°__________(填“>”,“=”或“<”)14、如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为__________.(结果保留根号)15、如果一个正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为__________.16、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为__________.双成教育试卷第4/19页三、解答题17、解分式方程:+=1.18、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.19、我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A--了解很多”、“B--了解较多”,“C--了解较少”,“D--不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;双成教育试卷第5/19页(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20、一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).21、“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22、甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23、如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A双成教育试卷第6/19页是⊙O上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.24、在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x-x1)(x-x2)].25、问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.双成教育试卷第7/19页双成教育试卷第8/19页2013年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:根据有理数的大小比较方法,找出最小的数即可.试题解析:∵-2<-<0<5,∴四个数中最小的数是-2;故选A.2、答案:D试题分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.试题解析:从上面看所得到的图形是一个长方形,中间有一个没有圆心的圆,与长方形的两边相切.故选:D.3、答案:B试题分析:根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.试题解析:∵∠CED=90°,∠AEC=35°,∴∠BED=180°-∠CED-∠AEC=180°-90°-35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选B.4、答案:A试题分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.试题解析:,由①得:x>,由②得:x>-1,不等式组的解集为:x>,双成教育试卷第9/19页故选:A.5、答案:C试题分析:根据平均数的计算公式列出算式,再进行计算即可.试题解析:根据题意得:(111+96+47+68+70+77+105)÷7=82;故选C.6、答案:D试题分析:根据正比例函数图象所在象限,可判断出m、n的正负.试题解析:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.7、答案:C试题分析:首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.8、答案:A试题分析:设一次函数的解析式为y=kx+b(k≠0),再把x=-2,y=3;x=1时,y=0代双成教育试卷第10/19页入即可得出k、b的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.试题解析:一次函数的解析式为y=kx+b(k≠0),∵x=-2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.故选A.9、答案:C试题分析:首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x-y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x-y)2,解得x=y,∴MD=MB=2x-y=y,∴==.故选:C.10、答案:B试题分析:先判断出抛物线开口方向上,进而求出对称轴即可求解.试题解析:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a-5b+c>9a+3b+c,∴<1,∴->-1,∴x0>-1∴x0的取值范围是x0>-1.双成教育试卷第11/19页故选:B.二、填空题11、答案:试题分析:先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:原式=-8+1=-7.故答案为:-7.12、答案:试题分析:首先利用提取公因式法分解因式,由此即可求出方程的解.试题解析:x2-3x=0,x(x-3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.13、答案:试题分析:(1)比较A(-2,1)与A′(3,2)的横坐标、纵坐标,可知平移后横坐标加5,纵坐标加1,由于点A、B平移规律相同,坐标变化也相同,即可得B′的坐标;(2)8cos31°很接近4,再比较即可.试题解析:(1)由于图形平移过程中,对应点的平移规律相同,由点A到点A′可知,点的横坐标加5,纵坐标加1,故点B′的坐标为(1+5,3+1),即(6,4);(2)∵8cos31°≈4,∴4>.故答案为:(6,4);>.14、答案:试题分析:如图,过点A作AE⊥BD于点E,过点C作CF⊥BD于点F.则通过解直角△AEO和直角△CFO求得AE=CF=,所以易求四边形ABCD的面积.试题解析:如图,过点A作AE⊥BD于点E,过点C作CF⊥BD双成教育试卷第12/19页于点F.∵BD平分AC,AC=6,∴AO=CO=3.∵∠BOC=120°,∴∠AOE=60°,∴AE=AO•sin60°=.同理求得CF=,∴S四边形ABCD=S△ABD+S△CBD=BD•AE+BD•CF=2×××8=12.故答案是:12.15、答案:试题分析:正比例函数与反比例函数y=的两交点坐标关于原点对称,依此可得x1=-x2,y1=-y2,将(x2-x1)(y2-y1)展开,依此关系即可求解.试题解析:∵正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,关于原点对称,依此可得x1=-x2,y1=-y2,∴(x2-x1)(y2-y1)=x2y2-x2y1-x1y2+x1y1=x2y2+x2y2+x1y1+x1y1=6×4=24.故答案为:24.16、答案:试题分析:由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF=AB=3.5为定值,则GE+FH=GH-EF=GH-3.5,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值14-3.5=10.5.试题解析:当
本文标题:2013年陕西省中考数学试卷(含解析)
链接地址:https://www.777doc.com/doc-5204320 .html