您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 同济六版高数练习册答案 第八章 多元函数微分法及其应用
第八章多元函数微分法及其应用§1极限与连续1.求下列极限:(1)2201)ln(limyxexyyx;解:初等函数在其定义域内连续。2201)ln(limyxexyyx=02210ln(1)10limxye=ln2(2)xyxyyx42lim000014(24)limxyxyxyxy(3)11lim00xyxyyx00(11)2limxyxyxyxy(4)20sin()limxyxyy=20sin()212limxyxyxxy(5)22222200)()cos(1limyxyxeyxyx22222222222000011()()220()limlimxyxyxxyyxyxyxyee2.证明下列极限不存在(1)yxyxyxlim00;解令ykx则000011limlimxxyyxyxkxkxyxkxk,不同的路径极限不同,故极限不存在。(2)2222200)(limyxyxyxyx.当yx时22222001()limxyxyxyxy当2yx时424220000440441limlimxxyyxxxxx,不同的路径极限不同,故极限不存在3.用定义证明:02200limyxxyyx.解:由22222222221()20xyxyxyxyxyxyxy,故对0取,当22(0)(0)xy时220xyxy,故02200limyxxyyx§2偏导数1.求下列函数的偏导数:(1))(cos)sin(2xyyxxz;sin()cos()2cos()[sin()]sin()cos()sin2zxyxxyxyxyyxyxxyyxyxcos()2cos()[sin()]cos()sin2zxxyxyxyxxxyxxyy(2))ln(xyz解:12ln()zxy,12111ln()()22ln()zxyyxxyxxy12111ln()()22ln()zxyxyxyyxy(3)yxeyxz2tanln2222111(sec)2cotsec2tanxyxyzxxxeexxyyyyyy2222221(sec)()cotsectanxyxyzxxxxxeexyyyyyyy(4)yxyz)1(解:关于x是幂函数故:121(1)(1)yyzyxyyyxyx,关于y是幂指函数,将其写成指数函数ln(1)yxyze,故:ln(1)1[ln(1)](1)(ln(1))11yxyyzxyexyyxxyxyyxyxy(5)zyxu)(关于x是幂函数故111()()zzuxzxzxyyyy,关于y是幂函数故1122()()()zzuxxxzxzyyyyy,关于z是指数函数()lnzuxxzyy。(6)zyxu)arctan(11221()()1[()]1[()]zzzzuzxyxyzxxyxy11221()()(1)1[()]1[()]zzzzuzxyzxyyxyxy221()ln()()ln()1[()]1[()]zzzzuxyxyxyxyzxyxy2.填空(1)曲线4422yyxz在点)5,4,2(处的切线与x轴正向所成的倾角为解法一:由偏导数的几何意义知:函数224xyz在点(2,4)关于x的偏导数就为曲线在点)5,4,2(处的切线与x轴正向所成的倾角(记为)的正切,即:(2,4)tan|zx,得(2,4)2tan|14x,故4。解法二:求曲线在点)5,4,2(处的切向量,将曲线参数化为24164xxyxz,在x的切向量为1,0,2x,故曲线在点)5,4,2(处的切向量为1,0,1,若记它与x轴正向所成的倾角为,则2221cos101,故曲线在点)5,4,2(处的切线与x轴正向所成的倾角为4(2)设yxyxyxfarcsin)1(),(,则)1,(xfx=法一:(,1)(11)arcsin1xfxxx,故(,1)(,1)1xxdfxfxdx法二211(,)1(1)1xfxyyyxy故(,1)(,)|11xxxxfxfxyy(3)设)11(yxez,则yzyxzx22=.由11()21xyzexx,11()21xyzeyy,有11()2222xyzzxyezxy3.设222232,(,)(0,0)(,)()0,(,)(0,0)xyxyfxyxyxy用定义证明:),(yxf在)0,0(处连续,且偏导数存在.证明(1)用定义证明),(yxf在)0,0(处连续:由22222221222322232()0()()()xyxyxyxyxy,故00lim(,)0(0,0)xyfxyf,故),(yxf在)0,0(处连续(2)00(0,0)(0,0)00(0,0)limlim0xxxfxffxx00(0,0)(0,0)00(0,0)limlim0yyxfyffyy4.求下列函数的二阶偏导数yxzyzxz22222,和:(1)yxzarctan222111zyxyxyxy,22221()1zxxyyxyxy2221222222222()()(())()22()zzyyxyyxyxxyxyxxxxxyx2221222222222()()(())()22()zzxxxyxxyyxyxyyyyyxyx2222222222222()2()()()()zzyxyyyxyxyyxyxyxyxy(2)lnxzylnln1lnlnxxzyyyyxxx,ln1lnxzyxy,lnln2ln2ln222ln[()ln]lnlnlnln()()xxxxyyyxyyzzyyyyxyxxxxxxx22ln1ln2ln22lnln()(ln)(ln1)lnxxxzzxxyxxyxyyyyyylnln12lnln(ln)lnlnlnln1()()xxxxyyxyzzyyxyyyxyyxyxxxy4.验证222zyxr满足:rzryrxr2222222证明:222rxxxrxyz,222222222222223222()()()xxyzxyzrrxxrxxxxxrxxyzrxyz同理可得22223rryyr,22223rrzzr,故2222222222223332rrrrxryrzxyzrrrr5.设)ln(xyxz,求23yxz1ln()ln()1zxyxyxyxxy,211()(ln()1)zzxyxxyyxyxyy,322211()()zzxyyxyyyy§3全微分1.判断(1)若函数),(yxfz在点0P可微,则函数在点0P偏导数存在.(T)(2)偏导数存在是可微的充分条件.(F)(必要条件)(3)可微必连续.(T)(4)连续必可微.(F)(5)若函数在一点偏导数存在且连续,则函数在该点一定可微.(T)2.求下列函数的全微分:(1)xyez;法一:2yxzyexx,1()yyxxzeeyxx22()yyyxxxzzyeeydxxdydzdxdydxdyexyxxx法二221()[()]yyyxxxyyydxxdydzededxdyexxxx(2)222yxyz;133222222222322212[2]2()222zxyyxyyxyxxyxyxxxy,22222322222222yxyyxyzxyxyxy233223222222222()()zzxyxxdzdxdydxdyxdyydxxyxyxyxy(3)()zuxy.11()()zzuzxyyyzxyx,11()()zzuzxyxxzxyy,()lnzuxyxyyuuududxdydzxyz=)ln()(xydzdyyzdxxzxyz3.利用微分的形式不变性求函数)4ln(22yxz的偏导数,并求21yxzd的值.222222221122(4)(22)444xdxydydzdxyxdxydyxyxyxy,1222(21)(22)2441299xydxdydzdxdy4.讨论函数222222221()sin0,(,)00,xyxyxyfxyxy在)0,0(点的可微性.分析用定义去证明函数(,)fxy在00(,)xy可微性,(1)首先考察在00(,)xy的可导性,若不可导,则不可微。(2)若可导求出00(,)xfxy,00(,)yfxy,算出全增量0000(,)(,)zfxxyyfxy,和偏增量0000(,)(,)xyfxyxfxyy,(3)考察全增量与偏增量之差是否是22()()xy的高阶无穷小,即极限000000002200[(,)(,)][(,)(,)]lim()()xyxyfxxyyfxyfxyxfxyyxy是否为零。若为零则可微,否则不可微。解:首先考察在)0,0(的可导性,2220001()sin0(0,0)(0,0)1()(0,0)limlimlimsin0()xxxxxfxfxfxxxx(无穷小乘有界函数为无穷小)2220001()sin0(0,0)(0,0)1()(0,0)limlimlimsin0()yyyyyfyfyfyyyy全增量22221(0,0)(0,0)[()()]sin()()zfxyfxyxy偏增量0000(,)(,)0xyfxyxfxyy2222222200001[()()]sin[0,00,0]()()limlim()()()()xyxxyyxyzfxfyxyxyxy122222001lim[()()]sin0()()xyxyxy(无穷小乘有界函数为无穷小)故函数在)0,0(点的可微。5.计算33)97.1()02.1(的近似值.解:令33(,)fxyxy,由于函数是初等函数故在1,2可微(1,2)(1,2)(1,2)(1,2)xyfxyffxfy223333331122()()22xyxxxyyyxyxy,即1(1,2)2(1,2)2fxyxyf,故:331(1.02)(1.97)10.02,2(0.03)
本文标题:同济六版高数练习册答案 第八章 多元函数微分法及其应用
链接地址:https://www.777doc.com/doc-5273388 .html