您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 人教版《二次根式》整章教案
1第十六章二次根式教学目标1.知识与技能(1)理解二次根式的概念.(2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),2a=a(a≥0).(3)掌握a·b=ab(a≥0,b≥0),ab=a·b;ab=ab(a≥0,b0),ab=ab(a≥0,b0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式a(a≥0)的内涵.a(a≥0)是一个非负数;(a)2=a(a≥0);2a=a(a≥0)及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及2a=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需9课时,具体分配如下:21.1二次根式3课时21.2二次根式的乘法2课时21.3二次根式的加减2课时教学活动、习题课、小结2课时216.1二次根式(1)年级:八年级科目:数学主备人:林增胜课型:新授课授课时间:累计课时:教学内容二次根式的概念及其运用教学目标知识与技能:1、理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.过程与方法:经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。情感态度与价值观:经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。教学重难点1.重点:形如a(a≥0)的式子叫做二次根式的概念;2.难点:利用“a(a≥0)”解决具体问题.教学方法:讲解——小组合作教学准备:多媒体课件教学过程(一)复习引入:(1)已知x2=a,那么a是x的______;x是a的________,记为______,a一定是_______数。(2)4的算术平方根为2,用式子表示为=__________;正数a的算术平方根为_______,0的算术平方根为_______;式子)0(0aa的意义是。(二)提出问题1、式子a表示什么意义?2、什么叫做二次根式?3、式子)0(0aa的意义是什么?4、)0()(2aaa的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16,34,5,)0(3aa,12x2、计算:(1)2)4((2)2)3(43根据计算结果,你能得出结论:,其中0a,)0()(2aaa的意义是。3、当a为正数时指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。所以,在二次根式中,字母a必须满足,才有意义。(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习:x取何值时,下列各二次根式有意义?①43x②223x③2、(1)若33aa有意义,则a的值为___________.(2)若在实数范围内有意义,则x为()。A.正数B.负数C.非负数D.非正数(四)展示反馈(学生归纳总结)1.非负数a的算术平方根a(a≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。2.式子)0(aa的取值是非负数。(五)精讲点拨1、二次根式的基本性质(a)2=a成立的条件是a≥0,利用这个性质可以求二次根式的平方,如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。(六)拓展延伸1、(1)在式子xx121中,x的取值范围是____________.(2)已知42x+yx2=0,则x-y=_____________.2、由公式)0()(2aaa,我们可以得到公式a=2)(a,利用此公式可以把任意一个非负数写成一个数的平方的形式。(1)把下列非负数写成一个数的平方的形式:50.35(2)在实数范围内因式分解72x4a2-11教学反思:________)(2ax21x416.1二次根式(2)年级:八年级科目:数学主备人:林增胜课型:新授课授课时间:累计课时:教学内容1.a(a≥0)是一个非负数;2.(a)2=a(a≥0).教学目标知识与技能:1、理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0);最后运用结论严谨解题.过程与方法:1、在明确(a)2=a(a≥0)的算理的过程中,感受数学的实用性;2、课堂计算通过小组合作交流,培养学生的合作意识。情感态度与价值观:通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力。教学重难点1.重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.2.难点、:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出(a)2=a(a≥0).教学方法:讲解——练习法教学准备:多媒体课件教学过程(一)复习引入:(1)什么是二次根式,它有哪些性质?(2)二次根式25x有意义,则x。(3)在实数范围内因式分解:x2-6=x2-()2=(x+____)(x-____)(二)提出问题1、式子aa2表示什么意义?2、如何用aa2来化简二次根式?3、在化简过程中运用了哪些数学思想?(三)自主学习自学课本第3页的内容,完成下面的题目:1、计算:2422.02)54(220观察其结果与根号内幂底数的关系,归纳得到:当aa,0时52、计算:2)4(2)2.0(2)54(2)20(观察其结果与根号内幂底数的关系,归纳得到:当aa,0时3、计算:20当aa,0时(四)合作交流1、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:0aa0a00aa2 aa2、化简下列各式:2(1)0.3______2(2)0.3______2(3)5_______2(4)(2)_____a0a()3、请大家思考、讨论二次根式的性质)0()(2aaa与aa2有什么区别与联系。(五)展示反馈1、化简下列各式(1))0(42xx(2)4x2、化简下列各式(1))3()3(2aa(2)232x(x<-2)(六)精讲点拨利用aa2可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a”的取值。(七)拓展延伸(1)a、b、c为三角形的三条边,则cabcba2)(____________.(2)把(2-x)21x的根号外的(2-x)适当变形后移入根号内,得()A、x2B、2xC、x2D、2x(3)若二次根式26x有意义,化简│x-4│-│7-x│。八、归纳小结本节课应掌握:1.a(a≥0)是一个非负数;2.(a)2=a(a≥0);反之:a=(a)2(a≥0).九、布置作业1.教材P5复习巩固2.(1)、(2)P67.3.课后作业:《基础训练》教学反思:616.1二次根式(3)年级:八年级科目:数学主备人:林增胜课型:新授课授课时间:累计课时:教学内容2a=a(a≥0)教学目标知识与技能:1、理解2a=a(a≥0)并利用它进行计算和化简.2、通过具体数据的解答,探究2a=a(a≥0),并利用这个结论解决具体问题.过程与方法:课堂计算通过小组合作交流,培养学生的合作意识,提高竞争意识。情感态度与价值观:通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力。教学重难点关键1.重点:2a=a(a≥0).2.难点:探究结论.教学方法:练习法教学准备:多媒体课件教学过程一、复习引入老师口述并板收上两节课的重要内容;1.形如a(a≥0)的式子叫做二次根式;2.a(a≥0)是一个非负数;3.(a)2=a(a≥0).那么,我们猜想当a≥0时,2a=a是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:22=_______;20.01=_______;21()10=______;22()3=________;20=________;23()7=_______.(老师点评):根据算术平方根的意义,我们可以得到:22=2;20.01=0.01;21()10=110;22()3=23;20=0;23()7=37.因此,一般地:2a=a(a≥0)7例1化简(1)9(2)2(4)(3)25(4)2(3)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用2a=a(a≥0)去化简.解:(1)9=23=3(2)2(4)=24=4(3)25=25=5(4)2(3)=23=3三、巩固练习教材P5练习2.四、应用拓展例2填空:当a≥0时,2a=_____;当a0时,2a=_______,并根据这一性质回答下列问题.(1)若2a=a,则a可以是什么数?(2)若2a=-a,则a可以是什么数?(3)2aa,则a可以是什么数?分析:∵2a=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0时,2a=2()a,那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知2a=│a│,而│a│要大于a,只有什么时候才能保证呢?a0.解:(1)因为2a=a,所以a≥0;(2)因为2a=-a,所以a≤0;(3)因为当a≥0时2a=a,要使2aa,即使aa所以a不存在;当a0时,2a=-a,要使2aa,即使-aa,a0综上,a0例3当x2,化简2(2)x-2(12)x.分析:(略)五、归纳小结本节课应掌握:2a=a(a≥0)及其运用,同时理解当a0时,2a=-a的应用拓展.六、布置作业1.教材P5习题21.13、4、6、8.3.课后作业:《基础训练》教学反思:816.2二次根式的乘除(1)年级:八年级科目:数学主备人:林增胜课型:新授课授课时间:累计课时:教学内容a·b=ab(a≥0,b≥0),反之ab=a·b(a≥0,b≥0)及其运用.教学目标知识与技能:1、理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简2、由具体数据,发现规律,导出a·b=ab(a≥0,b≥0)并运用它进行计算;利用逆向思维,得出ab=a·b(a≥0,b≥0)并运用它进行解题和化简.过程与方法:1、经历“探索——发现——猜想——验证”的过程引导学生体会合情推理与演绎推理的相互依赖,相互补充的辩证关系;2、培养学生用规范的数学语言进行表达的习惯和能力。情感态度与价值观:鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性。教学重难点重点:
本文标题:人教版《二次根式》整章教案
链接地址:https://www.777doc.com/doc-5288817 .html