您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 关于Lyapunov指数计算方法的比较-张海龙
Lyapunov210042Lyapunov、、wolfLorenzLorenzLyapunovLyapunov、Lyapunov.、.LyapunovLorenzO415A1672-1292201201-0005-05TheComparisonforLyapunovExponentsCalculationMethodsZhangHailongMinFuhongWangEnrongSchoolofElectricalandAutomationEngineeringNanjingNormalUniversityNanjing210042ChinaAbstractInthispapertheseveralcomputationalmethodsofLyapunovexponentsarecomparedi.e.thedefinitionmethodtheorthogonalmethodthewolfmethodandthesmalldatasets.TheLyapunovexponentpowerandthemax-LyapunovexponentarecomputedthroughtheabovemethodsforLorenzsystem.Fromtheresultstheaccuraciesandthecomplexityoftheabovemethodsareinvestigated.Furthermorethemax-Lyapunovexponentsarealsocalculatedforthechaotictimeseriesincludingthenoise.Finallynumericalresultsdemonstratethattheperformancesofdifferentcompu-tationalmethodshavedifferencesandsomesummarieswillbepresented.KeywordsLyapunovexponentsLorenzsystemchaossystem2011-09-01.51075275、CXLX11_0889..E-mailminfuhong@njnu.edu.cn、.LyapunovLE12.、LELEYanWen3logisticlyapunovLLE、Liao4wolfLLE、Wang5wolflogisticLLE、Xie6.LE.Lyapunov、wolf、LorenzLyapunovLyapunov、.Lyapunov.1LE1.1LE—5—12120123JOURNALOFNANJINGNORMALUNIVERSITYENGINEERINGANDTECHNOLOGYEDITIONVol.12No.1Mar2012.λεnε·enλx0=|Fnx0+ε-Fnx0|1ε→0n→∞λ=lim1n∑n-1i=0lndFxdxx=xi2λLE.1.2wolfx1x2…xnmτYti=xtixti+τ…xti+m-1τi=12…N.Yt0Y0t0L0t1ε>0L'0=|Yt1-Y0t1|>εYt1Yt1Y1t1L1=|Yt1-Y1t1|<εYtNMLLEλ=1tM-t0∑Mi=0lnL'iLi.31.3GSRGram-SchmidtLyapunovt=t0x0mv11v21…vm1kAkt0k≤mt=t1x1mv'11v'21…v'm1x1=Fx0v'l1=Jx0vl1l=12…mA'kt0GSRv'11v'21…v'm1v12v22…vm2kA'kt1t=t2x2mv'12v'22…v'm2x2=Fx1v'l2=Jx1vl2l=12…m.kA'kt2λ1+λ2+…+λk=lim1tn-t0∑n-1i=0lnA'ktiAktik=12…m.41.41kxtii=12…Nmτ2mτYj|j=12…MYjY'jdj0=min‖Yj-Y'j‖|j-j'|>P5P.3Yjidjidji=min‖Yj+i-Y'j+i‖i=12…minM-jM-j'64ijlndjiyiyi=1qΔt∑qj=1lndji7qdjiLLE.2LorenzLyapunovLorenz7x=-ax-yy=-xz+rx-y{z=xy-bz.8—6—1212012a=10b=8/3x0=1y0=1z0=0.Matlab0.0110001Lorenz.r1500Lorenzrr=24r=310.a=10b=8/3r1500LorenzLEr2.44LLErr=24λmax>0r=220λmax≈01LE4rLElyapunov、.a=10b=8/3r=283LELLEλ1λ2λ3λmaxmτC-C8m=5τ=12、wolfLLE3Lyapunov1.LLE0.0.93s12.4swolf2min.—7—Lyapunov1a=10b=8/3r=28LyapunovTable1ThecomparisonofLyapunovExponentswitha=10b=8/3r=28λ1λ2λ3λmax\\\1.3671Wolf\\\0.02290.8564-0.0011-14.51850.8564\\\0.024LE59mτmτ.LEmτ.C-CmτmτLE2mτwolfmτC-Cmτ.2LyapunovTable2ThecomparisonofLyapunovexponentsfromembeddingdimensionsanddelaytimes、Wolfm=5τ=121.36710.02290.85640.024m=5τ=141.36710.01980.85640.0087m=8τ=121.36710.02410.85640.04500.002200.018210.Lorenzxii=12…Nm=5τ=124LE3wolf.3LyapunovTable3ThecomparisonofLyapunovexponentsinnoisytimeseriesyapunovlyapunov/%1.36711.42344.1Wolf0.02290.0223-2.60.85640.8514-0.510.0240.02410.423LorenzLLELE、3、wolf、14lyapunov、.2、KLyapunovLyapunov.Lyapunov、、.3、LLEmτC-CC-Cmτwolf.lyapunov、—8—1212012Lya-punov.References1.M.2005.LüJinhuLuJunanChenShihua.TheAnalysisandApplicationforChaoticTimeSeriesM.WuhanWuhanUniversityPress2005.inChinese2.J.20052212285-288.LuoLijunLiYinshanLiTongetal.ResearchandsimulationofLyapunov’sexponentsJ.ComputerSimulation20052212285-288.inChinese3.LyapunovJ.20105524354.YanWenLuZongsheng.ThenumericalcalculationmethodofLyapunovindexJ.China’sForeignTrade20105524354-356.inChinese4.LyapunovJ.20088439-41.LiaoDeweiZhuWeiqiang.ResearchonlyapunovexponentsalgorithmanditsapplicationJ.JournalofWenzhouVocationalandThechnicalCollege20088439-41.inChinese5.J.200535689-94.WangYanXuWeiQuJisheng.Thealgorithmandchickofphase-spacereconstructionbasedonthetimeseriesJ.JournalofShangdongUniversityEngineeringScienceEdition200535689-94.inChinese6XieZhongyuWangKejunZhangLing.ImprovedalgorithmforcalculatingLyapunovexponentanddistinguishingchaosfromnoiseJ.JournalofHarbinInstituteofTechnology2010171101-104.7.MatlabLorenzJ.200431640-42.ZhangZhengwei.AnalysisofLorenzsystemfamilywithMATLABJ.ContemporaryElectricTechnique200431640-42.inChinese8LuZhenboCaiZhiming.DeterminationofembeddingparametersforphasespacereconstructionbasedonimprovedC-CmethedJ.JournalofSystemSimulation200711192527-2538.9.J.200030116-21.ChenGuohuaMaJunhaiShengShaohan.Anewalgorithmofthephasespacereconstructionforthedataobtainedindynami-calsystemsJ.JournalofSoutheastUniversityNaturalScienceEdition200030116-21.inChinese10.LyapunovJ.2008255898-900.HanMinWangYijie.ComputationofthelargestLyapunovexponentinnoisychaoticsignalJ.ControlTheoryandApplica-tions2008255898-900.inChinese—9—Lyapunov
本文标题:关于Lyapunov指数计算方法的比较-张海龙
链接地址:https://www.777doc.com/doc-5328560 .html