您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 物理化学基础知识总结上册
物理化学基础知识总结上册第一章热力学第一定律及其应用1.体系与环境:我们用观察,实验等方法进行科学研究时,必须先确定所要研究的对象,把一部分物质与其余的分开(可以是实际的,也可以是想像的)。这种被划定的研究对象,就称为体系或系统,而在体系以外与体系密切相关,影响所能及的部分,则称为环境。根据体系和环境之间的关系,可以把体系分为三种:体系完全不受环境的影响,和环境之间没有物质或能量的交换者,称为隔离体系或孤立体系;体系与环境之间没有物质的交换,但可以发生能量的交换者,称为封闭体系;体系不受上述限制,即体系与环境之间可以有能量以及物质交换者,称为敞开体系。明确所研究的体系属于何种体系是至关重要的。由于处理问题的对象不同,描述他们的变量不同,所适用的热力学公式也有所不同。描述体系宏观性质的热力学变量可分为两类:广度性质(容量性质)和强度性质。广度性质的数值与体系的数量成正比。此种性质具有加和性,即整个性质的某种广度性质是体系中各部分该种性质的总和。广度性质在数学上是一次齐函数。强度性质此种性质不具有加和性,其数值取决于体系自身的特性,与体系的数量无关。强度性质在数学上是零次齐函数。体系的某种广度性质除以总质量或物质的量(或者把体系的两个容量性质相除)之后就成为强度性质。若体系中所含物质的量是单位量,即一摩尔,则广度性质就成为强度性质。2.热力学平衡态和状态函数:热平衡,力学平衡,相平衡,化学平衡。当体系处于一定的状态时,其广度性质和强度性质都具有一定的数值。但是体系的这些性质彼此之间是相互关联的,通常只需要指定其中的几个,其余的也就随之而定了。也就是说,在这些性质之中只有部分是独立的。体系的某些性质的改变只与始态和终态有关,而与变化时所经历的途径无关。在热力学中,把具有这种特性的物理量叫做状态函数。热和功与其改变的途径有关,是过程函数,从微观角度来说,功是大量质点以有序运动而传递的能量,热量是大量质点以无序运动方式而传递的能量。3.热力学第一定律:热力学第一定律是建立内能函数的依据,它既说明了内能、热和功可以相互转化,又表述了它们转化时的定量关系,所以这个定律是能量守恒与转化定律在热现象领域内所具有的特殊形式。如果将体系的内能扩展为一切能量,则热力学第一定律就是能量守恒与转化定律。热力学第一定律也可以表述为:第一类永动机是不可能造成的。内能是体系内部能量的总和。由于人们对物质运动形式的认识有待于继续不断的深入探讨,认识永无穷尽。所以内能的绝对值是无法确定的,但这一点对于解决实际问题并无妨碍,我们只需要知道在变化中的改变量就行了。热力学正是通过外界的变化来衡量体系状态函数的变化量,这是热力学解决问题的一种特殊方法。4.准静态过程与可逆过程:功的计算方法分为以下几种:自由膨胀、外压始终维持恒定、多次等外压膨胀、可逆膨胀,但是功的计算最基本的思路是其基本公式外压乘以体积的膨胀,其中根据过程的不同其具体形式不同,但都是在这基本公式的基础上演化而来的。根据热力学第一定律,内能的改变量决定于始、终状态,由于功的数值与过程有关,显然热的数值也必于变化的途径有关。同样,不能说体系中含有多少热量和功。功和热是被传递的能量,都不是状态函数,只有在过程发生时,才有意义,也只有联系某一具体的变化过程时,才能求出功和热来,也就是说功和热是体系的过程函数,在其具体的变化过程中才能体现出来,计算出来,不是状态函数。准静态过程:整个过程可以看成是由一系列极接近于平衡的状态所构成,这种过程称为准静态过程。准静态过程是一种理想化的过程,实际上是办不到的。因为一个过程必定引起状态的改变,而状态的改变一定破坏平衡。但一个过程进行的非常非常慢,速度趋于零时,这个过程就趋于准静态过程。5.可逆过程:某一体系经过某一过程,由状态1变到状态2之后,如果能使体系和环境都完全复原(即体系回到原来的状态,同时消除了原来过程对环境所产生的一切影响,环境也复原),则这样的过程就称为可逆过程。反之,如果用任何方法都不可能使体系和环境完全复原,则称为不可逆过程。在可逆膨胀过程中体系所做的功最大,而使体系复原的压缩过程中环境做的功最小。可逆过程是一种理想的过程,是一种科学的抽象,客观世界中并不真正存在可逆过程,实际过程只能无限地趋近于它。但是可逆过程的概念却很重要。可逆过程是在体系接近于平衡的状态下发生的,因此它和平衡态密切相关。以后我们可以看到一些重要的热力学函数的增量,只有通过可逆过程才能求得。可逆过程这个概念很重要!6.焓:引入了焓这个状态辅助函数,它的数学定义表达式。在不做非膨胀功的条件下,体系在等容过程中所吸收的热量全部用于增加内能;体系在等压过程中所吸收的热量,全部用于使焓增加。这个概念应该予以理解,焓是体系的状态函数,不是在等压条件下才存在,只是在等压条件下吸收的热量等于焓的改变量。由于一般的化学反应大都是在等压下进行的,所以焓更有实用价值。7.对封闭体系(均相且组成不变)加热时,设从环境吸进热量,体系的温度从1升高到2,则定义平均热容,温度的变化很小时可以写成微分的形式。对于不同的条件是等容或等压条件是其公式不一样,一个针对内能,一个针对焓。等容热容和等压热容一般视为常数,但有时候也考虑是温度的函数,这时候就去积分。8.热力学第一定律对理想气体的应用:盖-吕萨克-焦耳实验说明理想气体的内能和焓只是温度的函数,不考虑体积和压力的影响,这在做题目时也是很好的一个思路。理想气体的等压热容和等容热容之间的关系相差一个气体常数值。这个可以用公式进行推导,详见课本35—36页。绝热过程的功和过程方程式,对于理想气体绝热可逆过程存在过程方程,这也是求解此类题目的关键所在,利用其过程方程和理想气体状态方程去求解一些量。在过程中完全理想的绝热或完全理想的热交换都是不可能的,实际上一切过程都不是严格地绝热或严格地等温,而是介于两者之间。这种过程称为多方过程,它的方程式也应该介于等温可逆和绝热可逆过程之间,对于实际过程而言,但一般求解还是这两个理想过程。9.实际气体:理想气体具有理想气体状态方程式,并且具有其特性,但对于实际气体的考虑就较为复杂一些。实际气体的状态方程式有很多版本,例如范德华气体方程式等等。对实际气体的考虑一般要从最基本的公式结合具体的方程式去推导,理想气体的一些结论只不过是很熟练而已,其实其具体的推导也是从基本公式来推导。例如对于理想气体而言内能和焓仅仅是温度的函数,但对于实际气体而言就要考虑体积和压力的影响。有关实际气体的一些求算应该予以掌握。对于实际气体的讨论有一个节流实验,这个过程是一个绝热过程和等焓过程,在这的基础上去推导焦耳-汤姆逊系数,根据具体的实际气体来讨论该系数的正负,进而判断节流前后的温度的变化;对于理想气体该系数为零,温度前后不发生变化。10.赫斯定律:实验证明,不管化学反应是一步完成的,还是分几步完成的,该反应的热效应相同。换言之,即反应的热效应只与起始状态和终了状态有关,与变化的途径无关,着就是赫斯定律。这个定律是根据一些反应求解某一反应的状态函数的数值的理论依据,要灵活应用有时候会结合电化学方面的内容。11.几种热效应:焓的绝对值是无法测定的,可以通过一些数据来进行求其变化前后的改变量。例如:化合物的生成焓、自键焓估算生成焓、离子生成焓、燃烧焓等等,可以通过它们去求解反应的焓变。12.反应热与温度的关系----基尔霍夫定律:在等压下,若使同一化学反应分别在两个不同的温度下进行,则所产生的热效应一般不同。等压下的热效应也就是焓与温度的关系,满足基尔霍夫定律,但一般在温度变化较小的情况下可以做简单处理视为常数。对于熵也可以这样处理,但注意的是在变化过程中没有相的变化。13.绝热反应---非等温反应:对于实际反应而言既不是完全的等温又不是完全的绝热。这是两个极限的过程,我们一般都做等温处理,即反应前后的温度视为不变。绝热反应也是反应的另一个极限,这个过程有几点假设绝热等压过程,即焓变等于零,进而求该反应的最高反应温度。14.热力学第一定律的微观说明:对于内能的改变和功和热之间的关系从微观的角度进行解释。内能是体系内部能量的总和。其中功的改变从微观解释是能级间隔发生了改变,但各能及间隔上的粒子数没有改变;热的改变从微观解释是能级的间隔并没有发生改变,而粒子在能级上的数量发生改变。从微观的角度去解释内能和功及热之间的关系,即它们之间的微观关系。15.热容---能量均分原理:经典的能量均分原理是从自由度的角度来进行解释的,平动、转动、振动等都可以从自由度的角度来进行能量的估计,用能量均分原理。这个原理的缺点就是不能说明热容与温度的关系。其之间的关系应该从量子理论来解释。第二章热力学第二定律---热力学第二定律说明了反应进行的方向和反应的限度问题1.自发变化的共同特征-----不可逆性:自发变化乃是热力学的不可逆过程。这个结论是经验的总结,也是热力学第二定律的基础。上述自发变化都不会自动逆向进行,但这并不意味着它们根本不可能倒转,借助于外力可以使一个自动变化发生后再逆向返回原态。热力学第二定律的几种文字表述:一、克劳修斯的说法:不可能把热从低温物体传到高温物体,而不引起其他变化。二、开尔文说法:不可能从单一热源取出热使之完全变为功而不发生其它的变化。这两种说法实际上是等效的。克劳修斯从卡诺定理(讨论的是可逆机与不可逆机的热机效率问题,但它具有非常重大的意义。它在公式中引入了一个不等号。就是这个不等号解决了化学反应的方向问题,同时卡诺定理在原则上也解决了热机效率的极限值问题)的推导中引入了一个非常重要的概念即熵的概念。熵是一个状态函数,并且可以根据自身的变化来判断绝热体系和隔离体系的变化的方向问题。同时熵的引入也间接的引入了两个重要的热力学状态函数亥姆霍兹函数和吉布斯函数。用它们可以判断一定条件下体系的反应方向问题和反应限度问题。2.克劳修斯不等式与熵增加原理:克劳修斯在卡诺不等式的基础上经过推导引入了熵这个状态函数,用克劳修斯不等式可以判断反应进行的方向即过程的可逆性,也可以作为热力学第二定律的一种数学表达形式。对于绝热体系和隔离体系不可逆变化过程的熵大于零即熵增加原理。3.热力学第二定律的本质和熵的统计意义:我们知道热是分子混乱运动的一种表现。因为分子互撞的结果混乱的程度只会增加,直到混乱度达到最大程度为止(即达到在给定情况下所允许的最大值)。而功则是在与有方向的运动相联系是有秩序的运动,所以功转变为热的过程是规则运动转化为无规则的运动,是向混乱度增加的方向进行的。而有秩序的运动会自发地变为无秩序的运动。反之,无秩序的运动却不会自动地变为有秩序的运动。对于气体的混合和热的传递都可以从这个方面去解释,由此可见一切不可逆过程都是向混乱度增加的方向进行,而熵函数则可以作为体系混乱度的一种量度。这就是热力学第二定律所阐明的不可逆过程的本质。4.熵和热力学概率-----玻尔兹曼公式:熵和体系的微观状态数有关,进而建立了宏观热力学和微观之间的关系即统计热力学。通过微观的状态数去分析和阐述宏观的性质。5.亥姆霍兹函数和吉布斯函数:在引入熵函数的基础上,通过克劳修斯不等式间接引入了这两个重要的热力学函数。它们也可以对体系变化的方向在一定条件的前提下进行判断。6.化学变化中的吉布斯自由能变----化学反应的等温式:对于一个化学反应方向的判断不是用标准吉布斯自由能变来进行判断,而是通过吉布斯自由能变来进行判断,这个之间的关系就是化学反应的等温式。通过此式可以判断化学反应进行的方向。当达到平衡时吉布斯自由能变等于零,通过标准吉布斯自由能变和标准平衡常数之间的关系可以求平衡时的组成。这就涉及到两个问题一是反应方向的判断问题二是平衡时的组成问题。7.几个热力学函数间的关系:一是热力学函数之间的关系即推导出的辅助函数和一个吉布斯函数和亥姆霍兹函数之间的关系式。以及热力学的四个基本公式。并且通过麦克斯韦关系式推导出的一些关系式是非常重要的,在一些公式的推导中是很有用的。课本上的(1)----(7)个关系式的推导是很重要的,它考虑了一般情况下的函数之间的关系。比如在实际气体的讨论中内
本文标题:物理化学基础知识总结上册
链接地址:https://www.777doc.com/doc-5445168 .html