您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 数学思想与方法复习资料
1《数学思想与方法》复习资料2013.6一,填空题(每题3分,本题共30分)1.化归方法包含的三个要素是:化归对象、化归目标、化归途径。2.算法的有效性是指,如果使用该算法从它的初始化数据出发,能够得到这一问题的正确解。3.数学的研究对象大致可以分成两类:①研究数量关系;②研究空间形式。4.一个科学的分类标准必须能够将需要分类的数学对象,进行不重复、无遗漏的划分。5.根据学生掌握数学思想方法的过程有潜意识阶段、明朗化阶段和深刻理解阶段等三个阶段,可相应地将小学数学思想方法数学设计成多次孕育、初步理解、简单应用三个阶段。6.《九章算术》思想方法的特点是开放的归纳体系算法化的内容模型化的方法。7.抽象的含义:抽象是对同类事物抽取其共同的本质属性或特征,舍去其非本质的属性或特征的思维过程。8.在反例反驳中,构造一个反例必须满足条件(1)反例满足构成猜想的所有条件(2)反例与构成猜想的结论矛盾。9.化归方法的三个要素是化归对象,化归目标,化归途径。10.算法可分为多项式算法,指数型算法两大类.11.任何分类都必须遵循下列原则:不重复,无遗漏,标准同一,按层次逐步划分12.数学的研究对象大致可以分成如下两类确定性现象和随机性现象13.所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合的思想方法的思想方法。14.小学数学思想方法教学的主要阶段是:形象抽象思维,即由具体形象思维向抽象逻辑思维的过渡阶段.15.三段论是演绎推理的主要形式,三段论由大前提,小前提,结论组成。16.学生理解或掌握数学思想方法的过程有如下三个主要阶段对同一数学对象,若选取不同的标准,可以得到不同的分类。17.面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面人手:演绎证明此猜想为真;或者寻找反例说明此猜想为假,并且进一步修正或否定此猜想。18.变量数学产生的数学基础是解析几何,标志是微积分。19.化归方法是将疑难问题转化为已知问题。20.公理方法是从尽可能少的初始概念和公理出发,应用严格的逻辑推理,使一门数学构建成为演绎系统的一种方法。21.数学的第一次危机是由于出现了无理数(或)而造成的。22.数学猜想具有两个明显的特点:科学性与推测性。23.所谓社会科学数学化就是指数学向社会科学的渗透,运用数学方法来揭示社会现象的一般规律。24.分类必须遵循的原则是①不重复;②无遗漏;③标准同一。25.深层类比又称实质性类比,它是通过对被比较对象的处理相互依存的各种相似属性之间的多种因果关系的分析而得到的类比。26.《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它2学科,并且促进它们的发展。27.随机现象的特点是在一定条件下,可能发生某种结果,也可能不发生某种结果。28.等腰三角形概念的抽象过程,就是把一个新的特征:两边相等,加入到三角形概念中去,使三角形概念得到强化。29.类比法是指,由一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性的一种推理方法。30.面对一个问题,经过认真的观察和思考,通过归纳或者类比提出猜想,然后从两个方面入手:演绎证明此猜想为真;或者寻找反例说明此猜想为假,并且进一步修正或否定此猜想。二、判断题(每题4分,本题共20分)1.中国古代数学中使用的数学方法是演绎的方法。错误,中国古代数学中使用的数学方法是开放的归纳体系2.《几何原本》是人类历史上最早的演绎的公理化体系。正确《几何原本》是人类历史上最早形成的演绎体系,是公理体系在具体学科中应用成功的标志,并以此为开端的。3.微积分的建立标志着变量数学的诞生。正确4.完全归纳法的一般推理形式是:设S={A1,A2,---,An,---}由于A1具有属性p,A2具有属性p,…An具有属性p,因此推断集合S中的每一个对象都具有属性p。错误此题给出的是不完全归纳法的定义5.如果某一问题存在算法,并且进一步构造出这个算法,就一定能够求出该问题的解。错误如果某一问题存在算法,并进一步构造出这个算法,也不一定能够求出该问题的解6.数学模型方法是近代才产生的。(否)7.在小学数学教学中,本教材所涉及到的数学思想方法并不多见。(否)8.所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合的思想。(是)9.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识。(是)10.对同一数学对象,若选取不同的标准,可以得到不同的分类。(是)11.《九章算术》不包括代数、几何内容。(否)12.抽象和概括是两种完全不同的方法。(否)13.没有脱离数学知识的数学思想方法,也没有不包含数学思想方法的数学知识。(是)14.数学模型方法是物理学、工程学的专利,在生物学、经济学、军事学等领域没有应用。(否)15.在解决数学问题时,往往需要综合运用多种数学思想方法才能奏效.(是)16.计算机是数学的创造物,又是数学的创造者。(是)317.一个数学理论体系内的每一命题都是必须给出证明。(否)18.如果某一类问题存在算法,并且构造出这个算法,就一定能求出该问题的精确解。(否)19.对同一数学对象,若选取不同的标准,可以得到不同的分类。(是)20.数学思想方法教学隶属数学教学范畴,只要贯彻通常的数学教学原则就可实现数学思想方法教学目标。(否)21.《九章算术》不包括代数、几何内容(否)22.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识(是)23.对同一数学对象,若选取不同的标准,可以得到不同的分类(是)24.特殊化是研究共性中的个性的一种方法(否)25.数学模型方法应用面很窄(否)26.随机现象就是杂乱无章的现象,无论是个别还是整体,其随机现象都没有规律性。(×)27.数学学科的新发展——分形几何,其分形的思想就是讲某一对象的细微部分放大后,其结构与原先的一样。(√)28.我国中小学数学成绩举世公认,“高分必然产生高创造力”,我国中学生的科学测试成绩名列前茅。(×)29我国《数学课程标准》指出。数学知识就是“数与形以及演绎的知识”。(√)30.数学基础知识与数学思想方法是数学教学的两条主线,而且是两条明线。(×)三、简答题(每题10分,本题共30分)1.简述确定性现象、随机现象的特点以及确定数学的局限确定性现象特点:在一定条件下,其结果完全被决定,或者完全肯定,或者完全否定,不存在其他可能。即这种现象在一定的条件下必然会发生某种结果,或者必然不会发生某种结果随即现象的特点:在一定条件下,可能发生某种结果,也可能不发生某种结果。确定数学的局限性:随机现象并不是杂乱无章的现象,就个体而言,似乎没什么规律存在,但当同类现象大量出现时,在总体上却呈现出一种规律性,但是确定数学无法定量地揭示这种规律性2.简述数学建模的基本步骤。数学建模的方法和步骤是:弄清实际问题:包括了解问题的实际背景知识,从中提取有关的信息,明确要达到的目标。化简问题:根据问题的特点和目的,做出某种核力的假设,舍弃一些次要因素,从而使问题得以化简。建模:在假设的基础上,抓住主要因素和有关量之间的关系进行抽象概括,运用适当的数学工具刻画变量之间的数量关系,建立起相应的数学结构求解:对所得的模型在数学上进行推理或演算,求出数学上的结果检验:把数学上的结论返回到实际问题中。若模型与实际比较温和,则对所得结果给出实际含义,并进行解释。倘若经过检验与实际不符,就必须对所得模型加以修正,重复前面的建模过程。3.什么是类比猜想?并举一个例子。人们运用类比法,根据一类事物所具有的某种属性,得出其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为类比猜想分式与分数非常相似,只不过是用字母替代数而已,因此,我们可以猜想,分式与分数在定义、基本性质、约分、通分、四则运算等方面都是对应相似的。事实也如此。44.简述概括与抽象的关系。答:①概括方法与抽象方法是不同的,但是它们又有十分密切的联系。抽象是舍弃事物的一些属性而收括固定出其固有的另一些属性的思维过程,抽象得到的新概念与表述原来的对象的概念之间不一定有种属关系。②概括是在思维中由认识个别事物的本质属性,发展到认识具有这种本质属性的一切事物,从而形成关于这类事物的普遍概念。由概括得出的新概念是表述概括对象概念的一个属概念。③概括和抽象虽有差别,但又是互相联系、密不可分的。抽象是概括的基础,没有抽象就不能认识任何事物的本质属性,就无法概括。概括也是抽象思维过程中所必须的一个环节,前述“收括”操作实际上也是一个概括过程,有人就把“收括”称之为概括,由于对共同点的概括才能得出对象的本质属性,从而完成抽象过程。评分标准:(1)①答对,得3分;(2)②答对,得3分;(3)③答对,得4分;(4)完整答出①②③,得10分。5.简述培养数学猜想能力的途径。答:猜想能力培养可以通过数学教学,如:①新知识的学习、②数学规律的寻求、③解题思路的探索等途径来实现。评分标准:(1)①答对,得3分;(2)②答对,得3分;(3)③答对,得4分;(4)完整答出①②③,得10分。6.微积分产生可以归结为哪四类情况?答:这些问题归结到数学上主要有如下四类情况。①第一类是:已知物体移动的距离为时间的函数,求物体瞬时速度和加速度;反过来,已知物体的加速度为时间的函数,求速度和距离。·②第二类是:求曲线切线的斜率和方程。③第三类是:求函数的最大值与最小值。④第四类是:求曲线的长度,曲边梯形的面积,曲面围成的物体的重心。这四类问题的核心是求一个常量无法确定的量——变量——问题。评分标准:(1)①答对,得2.5分;(2)②答对,得2.5分;(3)③答对,得2.5分;(4)④答对,得2.5分;(5)完整答出①②③④,得10分。7.为什么说《几何原本》是一个封闭的演绎体系?①《几何原本》以少数原始概念和公设、公里为基础,运用逻辑规则将当时所知的几何学中的主要命题(定理)全部推演出来,从而形成一个井然有序的整体。在这个体系中除了逻辑规则外,每个定理的证明所采用的论据均是公设、公里或前面已证明的定理,并且引入的概念(除原始概念)也基本上符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。5②另外,《几何原本》回避任何与社会生产现实生活有关的应用问题,对社会生活的各个领域来说也是封闭的。因此,《几何原本》是一个相对封闭的演绎体系。8.简述计算机在数学方面的三种新用途。第一,用来证明一些数学命题;第二,用来预测某些数学问题的可能结果;第三,用来验证某些数学问题的结果的正确性9.试用框图表示出MM方法解题的基本步骤。MM方法解题的基本步骤可用框图表示为:10.简述化归方法在数学数学中的应用。化归方法在数学数学中的应用至少有以下三个方面:②利用化归方法学习新知识;②利用化归方法指导解题;③利用化归方法整理知识结构。11.试对《九章算数》思想方法的一个特点“算法化的内容”加以说明。答:《九章算术》在每一章内都先列举若干实际问题,并对每个问题给出答案,然后再给出“术”,作为一类问题的共同解法。以后遇到同类问题,只要按“术”给出的程序去做就一定能能求出问题的答案;书中的“术”其实就是算法。12.简述数学抽象的特征。答:数学抽象有以下特点:①无物质性;②层次性;③数学抽象过程要凭借分析或直觉;④数学抽象不仅有概念抽象还有方法抽象。13.为什么将“化隐为显”列为数学思想方法教学的一条原则?答:由于数学抽象方法往往隐含在数学知识的背后,知识教学虽然蕴含着思想方法,但如果不是有意识地把数学思想方法作为教学对象,在数学学习时,学生常常只注意到处于表层的数学知识,而注意不到处于深层的思想方法。因此,进行数学思想方法教学时必须以数学知识为载体,把隐藏在知识背后的思想方法显示出来,使之明朗化,才能通过知识教学过程达到思想方法教学的目的。14.简述用数学模型方法解决实际问题的基本步骤。答:用MM方法解决实际问题的基本步骤为:①从现实原型抽象概括出数学模型;②在数学模型上进行逻辑推理、论证或演算,求得数学问题的解;③从数学模型再过渡到现实原
本文标题:数学思想与方法复习资料
链接地址:https://www.777doc.com/doc-5447009 .html