您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 【数学】2011版经典期末习题--第10章-计数原理-第一节-排列组合
第十章计数原理第一节排列与组合第一部分三年高考荟萃2010年高考题一、选择题1.(2010全国卷2理)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.2.(2010全国卷2文)(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B【解析】B:本题考查了排列组合的知识∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有246C,余下放入最后一个信封,∴共有24318C3.(2010重庆文)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A)30种(B)36种(C)42种(D)48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即2212116454432CCCCCC=42法二:分两类甲、乙同组,则只能排在15日,有24C=6种排法甲、乙不同组,有112432(1)CCA=36种排法,故共有42种方法4.(2010重庆理)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有4414222AAA种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422AAAAA种方法故共有1008种不同的排法5.(2010北京理)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A)8289AA(B)8289AC(C)8287AA(D)8287AC【答案】A6.(2010四川理)(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A)72(B)96(C)108(D)144【答案】C解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232AA=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222AA=12个算上个位偶数字的排法,共计3(24+12)=108个7.(2010天津理)(10)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288种(B)264种(C)240种(D)168种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。(1)B,D,E,F用四种颜色,则有441124A种涂色方法;(2)B,D,E,F用三种颜色,则有334422212192AA种涂色方法;(3)B,D,E,F用两种颜色,则有242248A种涂色方法;所以共有24+192+48=264种不同的涂色方法。【温馨提示】近两年天津卷中的排列、组合问题均处理压轴题的位置,且均考查了分类讨论思想及排列、组合的基本方法,要加强分类讨论思想的训练。8.(2010天津理)(4)阅读右边的程序框图,若输出s的值为-7,则判断框内可填写(A)i<3?(B)i<4?(C)i<5?(D)i<6?【答案】D【解析】本题主要考查条件语句与循环语句的基本应用,属于容易题。第一次执行循环体时S=1,i=3;第二次执行循环时s=-2,i=5;第三次执行循环体时s=-7.i=7,所以判断框内可填写“i6?”,选D.【温馨提示】设计循环语句的问题通常可以采用一次执行循环体的方式解决。9.(2010福建文)10.(2010全国卷1理)(6)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(A)30种(B)35种(C)42种(D)48种【答案】A11.(2010四川文)(9)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是(A)36(B)32(C)28(D)24【答案】A解析:如果5在两端,则1、2有三个位置可选,排法为2×2232AA=24种如果5不在两端,则1、2只有两个位置可选,3×2222AA=12种共计12+24=36种12.(2010湖北文)6.现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是A.45B.56C.5654322D.6543213.(2010湖南理)7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.1514.(2010湖北理)8、现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152B.126C.90D.54【答案】B【解析】分类讨论:若有2人从事司机工作,则方案有233318CA;若有1人从事司机工作,则方案有123343108CCA种,所以共有18+108=126种,故B正确二、填空题1.(2010上海文)12.在n行m列矩阵12321234113451212321nnnnnnnnnn中,记位于第i行第j列的数为(,1,2,)ijaijn。当9n时,11223399aaaa45。解析:11223399aaaa1+3+5+7+9+2+4+6+8=452.(2010上海文)5.将一个总数为A、B、C三层,其个体数之比为5:3:2。若用分层抽样方法抽取容量为100的样本,则应从C中抽取20个个体。解析:考查分层抽样应从C中抽取201021003.(2010浙江理)(17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有______________种(用数字作答).解析:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题4.(2010江西理)14.将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有种(用数字作答)。【答案】1080【解析】考查概率、平均分组分配问题等知识,重点考查化归转化和应用知识的意识。先分组,考虑到有2个是平均分组,得221164212222CCCCAA两个两人组两个一人组,再全排列得:221146421422221080CCCCAAA5.(2010天津理)(11)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为和。【答案】24,23【解析】本题主要考查茎叶图的应用,属于容易题。甲加工零件个数的平均数为1918202212223312352410乙加工零件个数的平均数为1917112122242302322310【温馨提示】茎叶图中共同的数字是数字的十位,这事解决本题的突破口。6.(2010全国卷1文)(15)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)15.A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析1】:可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有1234CC种不同的选法;(2)A类选修课选2门,B类选修课选1门,有2134CC种不同的选法.所以不同的选法共有1234CC+2134181230CC种.【解析2】:33373430CCC2009年高考题一、选择题1.(2009广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A.36种B.12种C.18种D.48种【解析】分两类:若小张或小赵入选,则有选法24331212ACC;若小张、小赵都入选,则有选法122322AA,共有选法36种,选A.2.(2009北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8B.24C.48D.120【答案】C.w【解析】本题主要考查排列组合知识以及分步计数原理知识.属于基础知识、基本运算的考查.2和4排在末位时,共有122A种排法,其余三位数从余下的四个数中任取三个有3443224A种排法,于是由分步计数原理,符合题意的偶数共有22448(个).故选C.3.(2009北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【答案】B【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识.属于基础知识、基本运算的考查.首先应考虑“0”是特殊元素,当0排在末位时,有299872A(个),当0不排在末位时,有111488488256AAA(个),于是由分类计数原理,得符合题意的偶数共有72256328(个).故选B.4.(2009全国卷Ⅱ文)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)6种(B)12种(C)24种(D)30种答案:C解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数2424CC=36,再求出两人所选两门都相同和都不同的种数均为24C=6,故只恰好有1门相同的选法有24种。5.(2009全国卷Ⅰ理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(D)(A)150种(B)180种(C)300种(D)345种解:分两类(1)甲组中选出一名女生有112536225CCC种选法;(2)乙组中选出一名女生有211562120CCC种选法.故共有345种选法.选D6.(2009湖北卷理)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为.18A.24B.30C.36D【答案】C【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是24C,顺序有33A种,而甲乙被分在同一个班的有33A种,所以种数是23343330CAA7.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.60B.48C.42D.36【答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有62223AC种不同排法),剩下一名女生记作B,两名男生分
本文标题:【数学】2011版经典期末习题--第10章-计数原理-第一节-排列组合
链接地址:https://www.777doc.com/doc-5450898 .html