您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 《矩形的性质》教学设计
矩形的性质教案教师学科数学年级、班八年级课题矩形的性质时间年月日教学目标1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点教学重点矩形的性质教学难点矩形的性质的灵活应用教具准备活动平行四边形教具、课件教学步骤(体现预习、导入、教学问题设计、内容安排、小结、作业布置等)教学方法教学手段学法指导一、知识回顾:平行四边形有哪此性质?(动态课件演示)边:平行四边形的对边相等.角:平行四边形的对角相等,邻角互补对角线:平行四边形对角线互相平分对称性:中心对称图形二、新知引入:让学生举例说说生活中的特殊平行四边形(课件)根据学生的回答,选择其中的矩形来研究。(学生可能说到长方形、正方形等)三、新知探究:1、矩形的定义.教具和课件演示活动平行四边形的的变化过程,当变化到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).思考:为什么不说有两个、三个、四个角是直角呢?一、启发学生从边、角、对角线、对称性四个方面回答。学生一边回答教师一边通过课件演示。二、“数学来源生活”思想三、1、定义让学生发现,用自己的理解说。(启发学生定义矩形:这个图形还是平行四边形吗?还有哪一点很特别呢?)教学步骤(体现预习、导入、教学问题设计、内容安排、小结、作业布置等)教学方法教学手段学法指导2、探究矩形的性质:(课件)矩形是特殊的平行四边形(有一个角是直角的平行四边形)所以具有平行四边形的所有性质,课前也作了回顾。我们是按照边、角、对角线三个元素去描述的。通过和学生一起逐一探究得到矩形的性质,并让学生口述证明角:矩形的四个角都是直角对角线;矩形的对角线相等对称性:中心对称和轴对图形。(动态课件演示)(并与平行四边形的性质比较)(课件)3、探究直角三角形斜边上的中线的性质:(课件)提问:⑴如图,通过以上对矩形性质的探究,你能进一步发现图中有多少个直角三角形吗?有多少个等腰三角形吗?你能发现线段AO、CO、BO、DO之间的大小关系吗?这四条线段与AC、BD又是什么关系呢?如果只看直角三角形ABC,BO是什么边上的什么线?你能说说这个结论吗?⑵通过和学生一起回答上面的问题得到:直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半。四、学以致用(发给学生堂完成)1、矩形具有而平行四边行不具有的的性质是()(A)对角相等(B对角线相等(C)对角线互相平分(D)对边平行且相等2、矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是()(A)20°(B)40°(C)60°(D)80°3、两条直角边的长分别为12和5,则斜边上的中线长为()(A)26(B)13(C)8。5(D)6。54、已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,则矩形对角线的长为cm5如果矩形的一条对角线的长为8cm,两条对角线的一个交角为120°,求矩形的边长。(精确到0。01cm)(教材后练习题)6、如图:矩形ABCD的两条对角线相交于点O,CE‖OB交AB的延长线于点E,试证明AC与CE的大小关系。五、小结:我的收获:(略:见课件)2、启发学生用类比的方法从边、角、对角线三个方面去探究。3、让学生通过回答问题,自己发现直角三角形斜边上的中线的性质;从多边形中抽象出三角形来研究。四、让学生初步用矩形的有关性质解决问题。OEDCBA
本文标题:《矩形的性质》教学设计
链接地址:https://www.777doc.com/doc-5460718 .html