您好,欢迎访问三七文档
纳米材料在生物医学领域的应用与发展摘要:本文评述了纳米材料在生物医学领域的最新应用及研究状况,介绍了纳米生物材料所具有的特殊性能,以及纳米材料在国内外的应用实例和产业发展现状发展情况,并对其前景进行了展望。关键词:纳米材料;生物医学;应用。纳米材料与生物体在尺寸上有着密切的关系,例如,构成生命要素之一的核糖核酸蛋白质复合体的线度在15-20nm之间,生物体内各种病毒的尺寸也在纳米尺度范围。纳米技术的诞生使人类改造自然的能力直接延伸到分子和原子水平,使人类按照自己的意志操纵单个原子成为可能。纳米生物医用材料就是纳米材料与生物医用材料的交叉,将纳米微粒与其他材料相复合制成各种各样的复合材料。随着研究的进一步深入和技术的发展,纳米材料开始与许多学科相互渗透,显示出巨大的潜在应用价值,并且已经在一些领域获得了初步的应用。在过去几年中,生物纳米材料的理论与实验研究已成为人们关注的焦点,特别是核酸与蛋白质的生化、生物物理、生物力学、热力学与电磁学特征及其智能复合材料已成为生命科学与材料科学的交叉前沿。一.纳米生物医学材料的分类按照材料科学的分类方法,纳米生物医学材料可以分为纳米金属生物材料、纳米无机非金属生物材料、纳米高分子生物材料、纳米复合生物材料几种。但是按照其在生物医学领域的应用则可分为:细胞分离用纳米材料、细胞内部染色用纳米材料、抗菌及创伤敷料用纳米材料、组织工程中的纳米生物材料、生物活性材料几种,本文将照此分类进行介绍。1.细胞分离用纳米材料病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,因此利用纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中进行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判断出胎儿细胞中是否带有遗传缺陷。2.细胞内部染色用纳米材料利用不同抗体对细胞内各种器官和骨骼组织的敏感程度和亲和力的显著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组合“贴上”了不同颜色的标签,因而为提高细胞内组织的分辨率提供了一种急需的染色技术。3.抗菌及创伤敷料用纳米材料按抗菌机理,纳米抗菌材料分为三类:一类是Ag+系抗菌材料,其利用Ag+可使细胞膜上的蛋白失活,从而杀死细菌。在该类材料中加入钛系纳米材料和引入Zn2+、Cu+等可有效地提高其的综合性能;第二类是ZnO、TiO2等光触媒型纳米抗菌材料,利用该类材料的光催化作用,与H2O或OH-反应生成一种具有强氧化性的羟基以杀死病菌;第三类是C-18A°纳米蒙脱土等无机材料,因其内部有特殊的结构而带有不饱和的负电荷,从而具有强烈的阳离子交换能力,对病菌、细菌有强的吸附固定作用,从而起到抗菌作用。4.组织工程中的纳米生物材料材料支架在组织工程中起重要作用,因为贴壁依赖型细胞只有在材料上贴附后,才能生长和分化。模仿天然的细胞外基质2胶原的结构,制成的含纳米纤维的生物可降解材料已开始应用于组织工程的体外及动物实验,并将具有良好的应用前景。国内清华大学研究开发的纳米级羟基磷灰石/胶原复合物在组成上模仿了天然骨基质中无机和有机成分,其纳米级的微结构类似于天然骨基质。体外及动物实验表明,此种羟基磷灰石/胶原复合物是良好的骨修复纳米生物材料。5.生物活性材料随着纳米技术的发展,生物活性杂化材料在保持柔韧性的同时,弹性模量已接近硅酸硼玻璃,而且便于加入活性物质,因此是一种开发生物材料的理想途径。JonesSM等用TEOS(正硅酸乙酯)、甲基丙烯酰胺在偶氮类引发剂作用下,加入氯化钠制备出含钙盐的纳米SiO2聚合物复合材料,将其在人体液中放置1周后,可以观察到其表面有羟基磷灰石层形成,因而具有较好的生物活性。应用溶胶/凝胶技术制备纳米复合材料,同时在体系中引入胺基、醛基、羟基等有机官能团,使材料表面具有反应活性,可望在生化物质固定膜材料、生物膜反应器等方面获得较大应用。二.纳米生物医学材料的应用上文介绍了纳米生物材料的应用分类,下面就通过一些具体实例来进一步说明纳米材料在生物医学领域的应用。1纳米人工红细胞我们知道,脑细胞缺氧6~10分钟即出现坏死,内脏器官缺氧后也会呈现衰竭。纳米人工红细胞的原理是用一个可以双向旋转涡轴的选通栅门来控制氧气从小球中释放,通过调节涡轴旋转的速度和方向,使小球内的氧气根据人体需氧的多少以一定的速率释放到外部血液中,同时使供氧装置在富氧的地方具有吸收氧气的功能而在需氧的地方具有释放氧气的功能;同理,它还必须能在适当的地方吸收和释放二氧化碳。初步设计的人工纳米红细胞是一个金刚石的氧气容器,内部有1000个大气压,泵动力来自血清葡萄糖,它输送氧的能力是同等体积天然红细胞的233倍,并具有生物碳活性。它可以应用于贫血的局部治疗、人工呼吸、肺衰竭和体育运动需要的额外耗氧等。2纳米人工线粒体当细胞中的线粒体部分失去功能的时候,再来增加氧供给水平,并不一定能使组织有效地恢复,这时就需要直接释放三磷腺苷同时伴随着有选择地释放和吸收其他的一些代谢产物,后者是迅速恢复组织功能的有效手段。人工线粒体装置,如同前面的供氧装置一样,只不过在这里释放的是三磷腺苷而不是氧。3纳米人工眼球我国四川大学研制的纳米人工眼球通过电脉冲刺激大脑神经,使患者可“看”到外部的精彩世界。纳米眼球的外壳是用纳米材料制成,纳米材料是一种活性复合材料,眼球的外壳里面安置微型摄像机与集成电脑芯片,通过这两个部件将影像信号转化成电脉冲刺激大脑的枕叶神经,从而实现可视功能。4纳米人工鼻纳米人工鼻实际上是一种气体探测器,与燃气监视器道理相同,可同时监测多种气体。英国伯明翰大学正在研制“纳米鼻”来预报致哮喘病发作的环境因素,一旦空气中含有易引发哮喘病的气体如臭氧、一氧化碳及氮的氧化物时,其显示器就发出信号。5其它纳米生物医学材料的应用实例模拟骨骼结构的纳米物质主要成分为与聚乙烯混合压缩后的羟基磷灰石网,物理特性符合理想的骨骼替代物。通过优化纳米管制备制动器,将使人工肌肉得到实现。有报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂,金属陶瓷等复合纳米材料则能更大地改变材料的力学性质,在医学上可能用来制造人工器官。碳纳米管比钻石还耐用,其弹性如同人发,在1cm2上可植100亿根,且敏感度很强,大大超过人们的耳蜗纤毛;高敏感度的碳纳米材料人工耳蜗,可用于监听水中游动的微生物节奏,监测水质。在血液循环中流动的纳米听诊器,可监测特殊细胞功能失调,使癌症等疾病得到早期诊断。三.产业发展现状纳米生物医学技术的应用挽救了千万计危重病人的生命,降低了心血管、肿瘤及其它严重疾病患者的死亡率。由于心血管系统修复材料和器械的使用和医疗技术的提高,美国心脏病死亡率已从1950年每100000人的586.8人,降至2001年的247.8人,下降近60%;纳米生物医学技术的应用还提高了生命质量,降低了残疾人的数量。2003年全球人工髋关节和膝关节的年植入量已分别超过100万套。医用骨材料在国内外有着广阔的市场和巨大的经济效益。由于肿瘤、外伤及某些遗传性疾病造成的骨缺损是临床上面临的一大难题。2000年我国的骨外科临床治疗超过50万例。在美国,每年大约有90万人由于各种原因而接受骨损伤的手术治疗,其中80万人需要植入组织替代物。目前采用的自体骨移植和异体骨移植因存在种种弊端,不能解决临床实践中的大范围骨缺损。骨组织工程的临床应用前景为大范围骨缺损修复带来了曙光。以纳米生物医学技术为代表的新一轮产业正在发展初期,这些产业具有进一步提高人类生活质量、延长人类寿命的潜力。近10年来,因为国家对科学技术越来越重视,和纳米相关的基础研究已经在中国取得长足进展,中国已经成为仅次于美国的纳米科学研究大国。如何把这些基础研究成果转化为产品,特别是将其运用于生物医学的发展,将需要科研界、医疗卫生系统、产业界和国家支持这几方面力量通力合作。四.纳米材料在生物医学中应用的展望随着科学技术的发展,材料学和生物医学结合越来越紧密,纳米材料在生物应用上已取得了很大的成就,并展现出良好的发展势头和巨大的发展潜力。但是我们还应看到,很多方面发展还不完善,应用还不安全有待进一步研究。笔者认为在21世纪纳米材料在生物医学方面发展应该加强和有巨大应用潜力,将成为今后一段时间研究热点的有:(1)生物医学检测诊断用材料:不可否认,现在纳米材料在生物检测诊断上已发生相当大的发展和应用,各种纳米材料已经在实践中的应用取得了良好的效果。但在各种医学检测中对各种各样的功能性纳米材料的要求还比较高。比如生物医学工程和医疗设备器材两者之间相辅相成,生物医学工程是基础,它的课题研究的深人会催生新的医疗设备器材出现,同时对临床医疗设备器材的需求信息会产生新的研究方向,纳米功能材料在这个方面将大有前途。又如分析与检测技术的进一步优化,势必要求具有更先进性能纳米材料的出现。(2)药物治疗上使用的材料:药物控释纳米材料将继续成为纳米医用材料研究发展的重点。纳米粒子不但具有能穿过组织间隙并被细胞吸收等特性,而且还具有靶向、缓释、高效、低毒且可实现口服、静脉注射及敷贴等多种给药途径等优点,因而在药物输送方面具有广阔的应用前景。(3)功能性生物材料:各种有着特定功能的材料将越来越多地应用到生物医学上去。未来几年生物材料中纳米陶瓷将在人造骨骼中发挥主导作用,有着各种特性的无机———有机复合纳米材料也必将在介入治疗、血液净化方面大展身手。(4)生物安全性纳米材料:目前在一些国家生物纳米材料的安全性研究已经被提上日程,但很多研究还不深入,取得效果也不明显。在全球瞩目安全问题的同时,纳米材料安全性研究必将成为下一热点。生物降解绿色材料将是未来药物的首选。关于生物技术的风险,目前确实还有很多问题没有搞清楚,有待于继续研究。纳米技术与生物医学的结合,为医学界提供了全新的思路,纳米材料在医学领域的应用取得了显著效果。但纳米材料应用还很有限,尤其是在生物医学上面,目前大多数研究还处于动物实验阶段,还需大量临床试验予以证实,纳米材料应用的生物安全性有待进一步提高。这就要求生物医学研究者与纳米材料的研究人员合作需进一步加强,制造出更先进的生物医用纳米材料。我们有理由相信,随着纳米材料在生物医学领域更广泛的应用,临床医疗将变得节奏更快、效率更高,诊断、检查更准确,治疗更有效,人们的生命安全将得到更大的保障。参考文献:【1】李霞,彭蜀晋,张云龙;纳米材料在生物医学领域的应用【J】;化学教育;2006年第11期。【2】金海龙,王新宇,王洪森等;纳米材料在生物医学领域的应用与发展【J】;仪器仪表学报;第27卷第6期增刊2006年6月。【3】马小艺,陈海斌;纳米材料在生物医学领域的应用与前景展望【J】;中国医药导报;第3卷第32期,2006年11月。【4】黄渝鸿,许映霞,万昌秀;纳米材料在生物医学中的应用【J】;化工新型材料;第30卷第2期,2002年6月。【5】王锐,高峰,何晓雄;纳米技术在生物医学工程中的应用【J】;安徽建筑工业学院学报;第14卷第5期,2006年10月。【6】谢克亮,赵长安;纳米技术在医学领域中的应用研究进展【J】;新医学;2004年6月第35卷第6期;【7】徐翔晖,王雪微;陈晓农纳米生物材料的应用【A】;纳米科技;第6卷第1期,2009年2月;
本文标题:纳米生物医学材料
链接地址:https://www.777doc.com/doc-5483389 .html