您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 奥数中的和差问题报告
-1-和差问题、和倍问题、差倍问题一、和差问题:已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?分析:根据公式,我们要找出两个数的和与差,就能解决问题。由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。甲的煤多,甲是大数,乙是小数。故解法如下:甲:(52+4)÷2=28(吨)乙:28-4=24(吨)例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。甲:(15+5)÷2=10(只)乙:15-10=5(只)练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。长和宽各是多少厘米?二、和倍问题已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。-2-解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数例1:甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。乙:160÷(3+1)=40(本)甲:160-40=120(本)例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。梨树的棵数:171÷3=57,求桃树的棵数时要减去6棵。桃树:171-57-6=108梨树:(165)÷(2+1)=57(棵)桃树:171-57-6=108(棵)练习:1、小明和小强共有图书120本,小明的图书是小强的2倍,他们两人各有图书多少本?2、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?3、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须人乙仓库运出多少吨放入甲仓库?4、一个长方形的周长是是30厘米,长是宽的2倍,求长方形的面积是多少?三、差倍问题已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为差倍问题。解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。基本数量关系:小数=差÷(n-1)大数=小数×n或大数=差+小数-3-例1:一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅各多少元?分析:桌子的价格与椅子的价格的差是60,将椅子看成小数占1份,桌子占3份,份数差为3-1,根据数量关系:椅子的价格:60÷(3-1)=30(元)桌子的价格:30+60=90(元)例2:两筐重量相同的苹果,甲筐卖出7千克,乙筐卖出19千克后,甲筐剩余的苹果是乙筐的3倍,原来两筐各有苹果多少千克?分析:两筐苹果的重量相同,故两筐卖出的数量差即是原来苹果的数量差。两筐苹果的差为19-7=12(千克),将乙筐看成1份,甲筐为3份,份数差为2.乙筐现有苹果:(19-7)÷(3-1)=6(千克)乙筐原来有:6+19=25(千克)甲筐原来有25千克。练习:1、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。两桶酒原来各多少千克?2、六、一班有花盆的数量是六、二班的3倍,如果六、一班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个?作业:1、甲、乙两桶油共重100千克,从甲桶中取出5千克放入乙桶中,此时两桶油正好相等。求两桶油原来各有多少千克?2、甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放入乙箱中,则两箱中洗衣粉的袋数相等。求原来两箱洗衣粉各有多少袋?3、刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米,问这个操场的面积是多少平方米?4、小强今年15岁,小亮今年9岁。几年前小强的年龄是小亮的3倍?5、有两段一样长的绳子,第一根剪去21米,第二根剪去13米后是第一根剩下的-4-3倍,两根绳子原来有多长?6、老猫和小猫去钓雨,老猫钓的鱼是小猫的3倍,如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓了多少条鱼?7、学校今年参加科技兴趣小组的人数比去年多41人,今年人数比去年的3倍少35人,今年有多少人?和倍问题和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题.为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。例1甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?分析设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:解:乙班:160÷(3+1)=40(本)甲班:40×3=120(本)或160-40=120(本)答:甲班有图书120本,乙班有图书40本。这道应用题解答完了,怎样验算呢?-5-可把求出的甲班本数和乙班本数相加,看和是不是160本;再把甲班的本数除以乙班本数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。验算:120+40=160(本)120÷40=3(倍)。例2甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?分析解这题的关键是找出哪个量是变量,哪个量是不变量.从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量.最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍.依据解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。解:①甲、乙两班共有图书的本数是:30+120=150(本)②甲班给乙班若干本图书后,甲、乙两班共有的倍数是:2+1=3(倍)③乙班现有的图书本数是:150÷3=50(本)④甲班给乙班图书本数是:50-30=20(本)综合算式:(30+120)÷(2+1)=50(本)50-30=20(本)答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。验算:(120-20)÷(30+20)=2(倍)(120-20)+(30+20)=150(本)。-6-例3光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?分析把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。解:①女生人数:(760+40)÷(3+1)=200(人)②男生人数:200×3-40=560(人)或760-200=560(人)答:男生有560人,女生有200人。验算:560+200=760(人)(560+40)÷200=3(倍)。例4果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?分析下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就和梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍。解:①梨树的棵数:(552+20-12)÷(1+1+2)=560÷4=140(棵)②桃树的棵数:140×2+12=292(棵)③苹果树的棵数:140-20=120(棵)答:桃树、梨树、苹果树分别是292棵、140棵和120棵。例5549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?-7-分析上图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。解:①丙数是:(549+2-2)÷(2+2+1+4)=549÷9=61②甲数是:61×2-2=120③乙数是:61×2+2=124④丁数是:61×4=244验算:120+124+61+244=549120+2=122124-2=12261×2=122244÷2=122答:甲、乙、丙、丁分别是120、124、61、244.差倍问题前面讲了应用线段图分析“和倍”应用题,这种方法使分析的问题具体、形象,使我们能比较顺利地解答此类应用题.下面我们再来研究与“和倍”问题有相似之处的“差倍”应用题。“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题。例1甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?-8-分析上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知“甲班的图书比乙班多80本”,即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。解:①乙班的本数:80÷(3-1)=40(本)②甲班的本数:40×3=120(本)或40+80=120(本)。验算:120-40=80(本)120÷40=3(倍)答:甲班有图书120本,乙班有图书40本。例2菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?分析这样想:根据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多1800-300=1500(千克).从上图中清楚地看到这个重量相当于萝卜重量的3-1=2(倍),这样就可以先求出运来的萝卜是多少千克,再求运来的白菜是多少千克。解:①运来萝卜:(1800-300)÷(3-1)=750(千克)②运来白菜:750×3=2250(千克)验算:2250-1800=450(千克)(白菜剩下部分)750-300=450(千克)(萝卜剩下部分)答:菜站运来白菜2250千克,萝卜750千克。例3有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?-9-分析上图,两根绳子原来的长度一样长,但是从第一根截去12米,第二根绳子又接上14米后,第二根的长度是第一根的3倍.应该把变化后的第一根长度看作1倍,而12+14=26(米),正好相当于第一根绳子剩下的长度的2倍.所以,当从第一根截去12米后剩下的长度可以求出来了,那么第一根、第二根原有长度也就可以求出来了。解:①第一根截去12米剩下的长度:(12+14)÷(3-1)=13(米)②两根绳子原来的长度:13+12=25(米)答:两根绳子原来各长25米。自己
本文标题:奥数中的和差问题报告
链接地址:https://www.777doc.com/doc-5484231 .html