您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 反比例函数压轴题训练
1(2013武汉市).如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数)0(xxky的图象上,则k的值等于.答案:-12解析:如图,过C、D两点作x轴的垂线,垂足为F、G,CG交AD于M点,过D点作DH⊥CG,垂足为H,∵CD∥AB,CD=AB,∴△CDH≌△ABO(AAS),∴DH=AO=1,CH=OB=2,设C(m,n),D(m-1,n-2),则mn=(m-1)(n-2)=k,解得n=2-2m,设直线BC解析式为y=ax+b,将B、C两点坐标代入得2bnamb,又n=2-2m,BC=22(2)mn=25m,AB=5,因为BC=2AB,解得:m=-2,n=6,所以,k=mn=-1212.(3分)(2013•威海)如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3nB.m=﹣nC.m=﹣nD.m=n考点:反比例函数综合题.分析:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.解答:解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.点评:本题考查了反比例函数的综合,解答本题的关键是结合解析式设出点A、B的坐标,得出OE、BE、OF、AF的长度表达式,利用相似三角形的性质建立m、n之间的关系式,难度较大.18.(3分)(2013•宁波)如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为(,).考点:反比例函数综合题.分析:由相似三角形的对应角相等推知△BDE的等腰直角三角形;根据反比例函数图象上点的坐标特征可设E(a,),D(b,),由双曲线的对称性可以求得ab=3;最后,将其代入直线AD的解析式即可求得a的值.解答:解:如图,∵∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E,∴∠BAC=∠ABC=45°,且可设E(a,),D(b,),∴C(a,0),B(a,2),A(2﹣a,0),∴易求直线AB的解析式是:y=x+2﹣a.又∵△BDE∽△BCA,∴∠BDE=∠BCA=90°,∴直线y=x与直线DE垂直,∴点D、E关于直线y=x对称,则=,即ab=3.又∵点D在直线AB上,∴=b+2﹣a,即2a2﹣2a﹣3=0,解得,a=,∴点E的坐标是(,).故答案是:(,).点评:本题综合考查了相似三角形的性质、反比例函数图象上点的坐标特征、一次函数图象上的点的坐标特征、待定系数法求一次函数的解析式.解题时,注意双曲线的对称性的应用.12.如图6,直线y=21x与双曲线y=xk(k0,x0)交于点A,将直线y=21x向上平移4个单位长度后,与y轴交于点C,与双曲线y=xk(k0,x0)交于点B,若OA=3BC,则k的值为:(A)3(B)6(C)49(D)2916.(4分)(2013•泸州)如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△PnAn﹣1An都是等腰直角三角形,斜边OA1、A1A2、A2A3,…,An﹣1An都在x轴上(n是大于或等于2的正整数),则点P3的坐标是(+,﹣);点Pn的坐标是(+,﹣)(用含n的式子表示).考点:反比例函数综合题.3338333专题:综合题.分析:过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,根据△P1OA1,△P2A1A2,△P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐标,从而总结出一般规律得出点Pn的坐标.解答:解:过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,∵△P1OA1是等腰直角三角形,∴P1E=OE=A1E=OA1,设点P1的坐标为(a,a),(a>0),将点P1(a,a)代入y=,可得a=1,故点P1的坐标为(1,1),则OA1=2a,设点P2的坐标为(b+2,b),将点P1(b+2,b)代入y=,可得b=﹣1,故点P2的坐标为(+1,﹣1),则A1F=A2F=2﹣2,OA2=OA1+A1A2=2,设点P3的坐标为(c+2,c),将点P1(c+2,c)代入y=,可得c=﹣,故故点P3的坐标为(+,﹣),综上可得:P1的坐标为(1,1),P2的坐标为(+1,﹣1),P3的坐标为(+,﹣),总结规律可得:Pn坐标为:(+,﹣).故答案为:(+,﹣)、(+,﹣).点评:本题考查了反比例函数的综合,涉及了点的坐标的规律变化,解答本题的关键是根据等腰三角形的性质结合反比例函数解析式求出P1,P2,P3的坐标,从而总结出一般规律,难度较大.13(2013临沂).如图,等边三角形OAB的一边OA在x轴上,双曲线xy3在第一象限内的图像经过OB边的中点C,则点B的坐标是()(A)(1,3).(B)(3,1).(C)(2,32).(D)(32,2).16.(2012浙江丽水,16,4分)如图,点P是反比例函数(0)kykx;图象上的点,PA垂直x轴于点(1,0)A,点C的坐标为(1,0),PC交y轴于点B,连结AB,已知5AB(1)k的值是_________;(2)若(,)Mab是该反比例函数图象上的点,且满足MBAABC,则a的取值范围是________【答案】(1)4(2)02a或1133113322a
本文标题:反比例函数压轴题训练
链接地址:https://www.777doc.com/doc-5563291 .html