您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 高等数学(本科)第四章课后习题解答
1习题4.11.填空题.(1)xdx2sinx2sin,xdxd2cosxdx2cos;(2)x1的一个原函数是xln,而21x原函数是x1;(3)设Cxedxxfxsin,则xfxexcos;(4)设Cexdxxfx22,则xfxexx212.2.判断题(1)Cxln是x1的所有原函数;(×).(2)CxFdxxf;(×).(3)x1是21x的一个原函数;(×).(4)Cdxxx2ln.22.(√).3.选择题。(1)下列等式正确的是(D)(A).xfdxxf(B).Cefdxefxx(C).Cxfdxxf(D).Cxfdxxfx221211(2)若xf的一个原函数是xsin,则xdf(D)(A).Cxsin(B).Cxsin(C).Cxcos(D).Cxcos(3)dxxmn(B)(A).Cxmnmmnm(B).Cxnmmmnm(C).Cxnnmnmn(D).Cxnmnnmn(4)若Cedxxfexx11,则xf()(A).x1(B).21x2(C).21x(D).x14.求下列不定积分。(1).dxx21;(2).dxxx;(3).xxdx2;(4).dxx35;(5).dxx221;(6).dxxx232;(7).dxxx113;(8).ghdh2;(9).dxxx221;(10).dxxxx1133224;(11).dxxxx21;(12).dxxx221213;(13).dxxex32;(14).dxxeexx1;(15).dxxxx2.33.23;(16).dxxxxtansecsec;(17).dxx2cos2;(18).xdx2cos1;(19).dxxxxsincos2cos;(20).dxxxx22sincos2cos。解:(1).Cxdxxdxx1122;(2).dxxxCxdxx252352;(3).xxdx2Cxdxx232532;(4).dxx35Cxdxx43455;(5).dxx221dxxx1224Cxxxdxdxxdxx352432512;(6).dxxx232Cxxxdxxdxdxx2233123232;(7).dxxx113dxdxxdxxdxxdxxxx2322321Cxxxxdxdxxdxxdxx23253232325231;(8).ghdh2CghChgdhhg22.212121;3(9).dxxx221dxxx22111Cxxdxxdxarctan112;(10).dxxxx1133224dxxxx1113222Cxxdxxdxxarctan113322;(11).dxxxx21Cxxdxxdxxdxxx4154741143432154741;(12).dxxx221213dxxdxx22112113;Cxxarcsin2arctan3(13).dxxex32Cxedxxdxexxln32132;(14).dxxeexx1Cxedxxdxedxxexxx2121;(15).dxxxx2.33.23dxdxdxxx323232.32Cxx32ln3232;(16).dxxxxtansecsecCxxxdxxxdxsectantansecsec2;(17).dxx2cos2Cxxxdxdxdxxsin21cos21212cos1;(18).xdx2cos1Cxxdxxdxtan21sec211cos2122;(19).dxxxxsincos2cosCxxdxxxdxxxxxcossinsincossincossincos22;(20).dxxxx22sincos2cosxdxxdxdxxxxx222222seccscsincossincos;Cxxtancot。5.一曲线通过点3,2e,且在任一点处的切线斜率等于该点横坐标的倒数,求该曲线方程。解:设所求曲线的方程为xfy,由题意知4xxf1①故可设Cxdxxxfln1②由因为曲线xfy通过点3,2e,知32ef,将此条件代入②,解得1C。所以,所求曲线为1lnxy6.证明函数12arcsinx、x21arccos、xarcsin2、xx1arctan2都是xx11的原函数。证明:因为xxxxxxx112.14112121112arcsin2,所以12arcsinx是xx11的原函数。同理可证x21arccos、xarcsin2、xx1arctan2也是xx11的原函数。习题4.21.填空题.(1)dx91xd9;(2)dx7137xd;(3)xdx212xd;(4)xdx10125xd;(5)dxex221xed2;(6)dxex2221xed;(7)xdx51xdln5;(8)291xdx31xd3arctan;(9)21xdx1xdarcsin1;(10)21xxdx121xd;2.若CxFdxxf,则(1)dxefexxCeFx;(2)dxxxfcossinCxFcos;5(3)dxxxf12CxF1212;(4)dxxfx1CxF2;3.选择题.(1)设xexf,则dxxxfln(B)(A).Cx1(B).Cx1(C).Cxln(D).Cxln(2)设xf连续且不等于0,若Cxdxxxfarcsin,则xfdx为(D)(A).Cx232132(B).Cx232131(C).Cx232132(D).Cx232132(3)dxxex(C)(A).Cex(B).Cex21(C).Cex2(D).Cex(4)dxxx2ln11(A)(A).Cx)arcsin(ln(B).Cx)arccos(ln(C).Cx)arctan(ln(D).Cx2)(ln14.求下列各题的不定积分.(1).dxex5;(2).dxx323;(3).xdx21;(4).332xdx;(5).dteatbtsin;(6).dtt3cos2;(7).dtttsin;(8).dxxx210sectan;(9).xxxdxlnlnln;(10).xxdxcossin;(11).xxeedx;(12).dxxex2;6(13).dxxx2cos;(14).dxxx232;(15).dxxx4313;(16).dxxx321;(17).dxxxx4sin1cossin;(18).dxxx3cossin;(19).dxxx2112;(20).dxxx2491;(21).xdx3cos;(22).dxxxxx3cossincossin;(23).xdxx3cos2sin;(24).dxxx2coscos;(25).dxxx7sin5sin;(26).dxxxsectan3;(27).dxxxx1arctan;(28).221arcsinxxdx;(29).dxxxx2lnln1;(30).)0(222axadxx;(3).dxxx92;(32).)0(322axadx;(33).)0(322aaxdx;(34).)0(322aaxdx.解:(1).dxex5Cexdexx5551551;(2).dxx323CxCxxdx4432381423.21232321;(3).xdx21Cxxdx21ln212121121;(4).332xdxCxCxxdx3232312123.31323231;(5).dteatbtsinCbeatabtdebatatdabtbtcos1sin1;(6).dtt3cos2Cttttddtdtt6sin1212166cos1212126cos1;(7).dtttsinCttdtcos2sin2;7(8).dxxx210sectanCxxdx1110tan111tantan;(9).xxxdxlnlnlnCxxdxlnlnlnlnlnlnln1;(10).xxdxcossinCxxxxddxx2cot2cscln22csc2sin2;另解:xxdxcossin.tanlntantan1tansec2Cxxdxdxxx(11).xxeedxCeededxeexxxxxarctan11122;(12).dxxex2Cexdexx2221212;(13).dxxx2cosCxxdx222sin21cos21;(14).dxxx232Cxxdx222322.613232161;Cx23231(15).dxxx4313Cxxdx4441ln4311143;(16).dxxx321CxCxxdx23323333192132.311131;(17).dxxxx4sin1cossinCxxdx2222sinarctan21sinsin1121;(18).dxxx3cossinCxCxxdx223sec21cos121coscos1;另解:dxxx3cossin.tan21tantancos1.cossin22Cxxxddxxxx(19).dxxx2112xxdxdxxdxxxarcsin11111122222Cxxarcsin122(20).dxxx2491dxx2491xdxx2491822224949181223121xdxxdxCxx2492.8132arcsin21Cxx2494132arcsin21;(21).xdx3cosCxxxdxxdxx322sin31sinsinsin1cos.cos;(22).dxxxxx3cossincossin
本文标题:高等数学(本科)第四章课后习题解答
链接地址:https://www.777doc.com/doc-5581631 .html