您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 正弦定理习题精选精讲
习题精选精讲正、余弦定理的五大命题热点正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。在近年高考中主要有以下五大命题热点:一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.例1(2005年全国高考江苏卷)ABC中,3A,BC=3,则ABC的周长为()A.33sin34BB.36sin34BC.33sin6BD.36sin6B分析:由正弦定理,求出b及c,或整体求出b+c,则周长为3+b+c而得到结果.解:由正弦定理得:32sinsinsinsinsinsinsin()33bcbcbcBCBCBB,得b+c=23[sinB+sin(23-B)]=6sin()6B.故三角形的周长为:3+b+c=36sin6B,故选(D).评注:由于本题是选择题也可取△ABC为直角三角形时,即B=6,周长应为33+3,故排除(A)、(B)、(C).而选(D).例2(2005年全国高考湖北卷)在ΔABC中,已知66cos,364BAB,AC边上的中线BD=5,求sinA的值.分析:本题关键是利用余弦定理,求出AC及BC,再由正弦定理,即得sinA.解:设E为BC的中点,连接DE,则DE//AB,且36221ABDE,设BE=x奎屯王新敞新疆在ΔBDE中利用余弦定理可得:BEDEDBEEDBEBDcos2222,xx6636223852,解得1x,37x(舍去)奎屯王新敞新疆故BC=2,从而328cos2222BBCABBCABAC,即3212AC奎屯王新敞新疆又630sinB,故22123sin306A,1470sinA奎屯王新敞新疆二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.例3(2005年北京春季高考题)在ABC中,已知CBAsincossin2,那么ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形解法1:由CBAsincossin2=sin(A+B)=sinAcosB+cosAsinB,即sinAcosB-cosAsinB=0,得sin(A-B)=0,得A=B.故选(B).解法2:由题意,得cosB=sin2sin2CcAa,再由余弦定理,得cosB=2222acbac.习题精选精讲∴2222acbac=2ca,即a2=b2,得a=b,故选(B).评注:判断三角形形状,通常用两种典型方法:⑴统一化为角,再判断(如解法1),⑵统一化为边,再判断(如解法2).三、解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题.例4(2005年全国高考上海卷)在ABC中,若120A,5AB,7BC,则ABC的面积S=_________奎屯王新敞新疆分析:本题只需由余弦定理,求出边AC,再运用面积公式S=21AB•ACsinA即可解决.解:由余弦定理,得cosA=2222254912102ABACBCACABACAC,解得AC=3.∴S=21AB•ACsinA=4315.∴21AB•AC•sinA=21AC•h,得h=AB•sinA=223,故选(A).四、求值问题例5(2005年全国高考天津卷)在ABC中,CBA、、所对的边长分别为cba、、,设cba、、满足条件222abccb和321bc,求A和Btan的值.分析:本题给出一些条件式的求值问题,关键还是运用正、余弦定理.解:由余弦定理212cos222bcacbA,因此,60A在△ABC中,∠C=180°-∠A-∠B=120°-∠B.由已知条件,应用正弦定理BBBCbcsin)120sin(sinsin321,21cot23sinsin120coscos120sinBBBB解得,2cotB从而.21tanB五、正余弦定理解三角形的实际应用利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识,例析如下:(一.)测量问题例1如图1所示,为了测河的宽度,在一岸边选定A、B两点,望对岸标记物C,测得∠CAB=30°,∠CBA=75°,AB=120cm,求河的宽度。分析:求河的宽度,就是求△ABC在AB边上的高,而在河的一边,已测出AB长、∠CAB、∠CBA,这个三角形可确定。解析:由正弦定理得sinsinACABCBAACB,∴AC=AB=120m,又∵11sin22ABCSABACCABABCD,解得CD=60m。点评:虽然此题计算简单,但是意义重大,属于“不过河求河宽问题”。(二.)遇险问题例2某舰艇测得灯塔在它的东15°北的方向,此舰艇以30海里/小时的速度向正东前进,30分钟后又测得灯塔在它的东30°北。若此灯塔周围10海里内有暗礁,问此舰艇继续向东航行有无触礁的危险?图1ABCD习题精选精讲解析:如图舰艇在A点处观测到灯塔S在东15°北的方向上;舰艇航行半小时后到达B点,测得S在东30°北的方向上。在△ABC中,可知AB=30×0.5=15,∠ABS=150°,∠ASB=15°,由正弦定理得BS=AB=15,过点S作SC⊥直线AB,垂足为C,则SC=15sin30°=7.5。这表明航线离灯塔的距离为7.5海里,而灯塔周围10海里内有暗礁,故继续航行有触礁的危险。点评:有关斜三角形的实际问题,其解题的一般步骤是:(1)准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词和术语;(2)画出示意图,并将已知条件在图形中标出;(3)分析与所研究问题有关的一个或几个三角形,通过合理运用正弦定理和余弦定理求解。(三.)追击问题例3如图3,甲船在A处,乙船在A处的南偏东45°方向,距A有9nmile并以20nmile/h的速度沿南偏西15°方向航行,若甲船以28nmile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?解析:设用th,甲船能追上乙船,且在C处相遇。在△ABC中,AC=28t,BC=20t,AB=9,设∠ABC=α,∠BAC=β。∴α=180°-45°-15°=120°。根据余弦定理2222cosACABBCABBC,2212881202920()2ttt,212860270tt,(4t-3)(32t+9)=0,解得t=34,t=932(舍)∴AC=28×34=21nmile,BC=20×34=15nmile。根据正弦定理,得315sin532sin2114BCAC,又∵α=120°,∴β为锐角,β=arcsin5314,又5314<7214<22,∴arcsin5314<4,∴甲船沿南偏东4-arcsin5314的方向用34h可以追上乙船。点评:航海问题常涉及到解三角形的知识,本题中的∠ABC、AB边已知,另两边未知,但他们都是航行的距离,由于两船的航行速度已知,所以,这两边均与时间t有关。这样根据余弦定理,可列出关于t的一元二次方程,解出t的值。五、交汇问题是指正余弦定理与其它知识的交汇,如与不等式、数列、立体几何(特别是求角与距离)、解析几何、实际问题等知识交汇.例6(2005年全国高考卷三试题)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,.43cosB(Ⅰ)求cotA+cotC的值;(Ⅱ)设32BABC,求a+c的值.分析:本题是正、余弦定理与向量、等比数列等知识的交汇,关键是用好正弦定理、余弦定理等.解:(Ⅰ)由,47)43(1sin,43cos2BB得西北南东ABC30°15°图2图3ABC北45°15°习题精选精讲由b2=ac及正弦定理得.sinsinsin2CAB则11coscossincoscossincotcottantansinsinsinsinACCACAACACACAC22sin()sin147.sinsinsin7ACBBBB(Ⅱ)由32BABC,得ca•cosB=32,由ㄋB=34,可得ac=2,即b2=2.由余弦定理b2=a2+c2-2ac+cosB,得a2+c2=b2+2ac·cosB=5.3,9452)(222caaccaca易错题解析例题1在不等边△ABC中,a为最大边,如果abc222,求A的取值范围。错解:∵abcbca2222220,∴。则cosAbcabc22220,由于cosA在(0°,180°)上为减函数且cos90090°,∴°A又∵A为△ABC的内角,∴0°<A<90°。辨析:错因是审题不细,已知条件弱用。题设是a为最大边,而错解中只把a看做是三角形的普通一条边,造成解题错误。正解:由上面的解法,可得A<90°。又∵a为最大边,∴A>60°。因此得A的取值范围是(60°,90°)。例题2在△ABC中,若abAB22tantan,试判断△ABC的形状。错解:由正弦定理,得sinsintantan22ABAB即sinsinsincoscossinsinsin2200ABAABBAB·,∵,∴,即sincossincossinsinAABBAB22。∴2A=2B,即A=B。故△ABC是等腰三角形。辨析:由sinsin22AB,得2A=2B。这是三角变换中常见的错误,原因是不熟悉三角函数的性质,三角变换生疏。正解:同上得sinsin22AB,∴2A=22kB或222AkBkZ()。∵000AbkAB,,∴,则或AB2。故△ABC为等腰三角形或直角三角形。例题3在△ABC中,A=60°,b=1,SABC△3,求abcABCsinsinsin的值。习题精选精讲错解:∵A=60°,b=1,SABC△3,又SABC△12bcAsin,∴312csin60°,解得c=4。由余弦定理,得abcbcA222116860coscos°13又由正弦定理,得sinsinCB6393239,。∴abcABCsinsinsin1314323239639。辨析:如此复杂的算式,计算困难。其原因是公式不熟、方法不当造成的。正解:由已知可得ca413,。由正弦定理,得213602393RaAsinsin°。∴abcABCRsinsinsin22393。例题4在△ABC中,c62,C=30°,求a+b的最大值。错解:∵C=30°,∴A+B=150°,B=150°-A。由正弦定理,得aAbAsinsin()sin1506230°°∴aA262()sin,bA262150()sin()°又∵sinsin()AA11501,°∴ab262262462()()()。故ab的最大值为462()。辨析:错因是未弄清A与150°-A之间的关系。这里A与150°-A是相互制约的,不是相互独立的两个量,sinA与sin(150°-A)不能同时取最大值1,因此所得的结果也是错误的。正解:∵C=30°,∴A+B=150°,B=150°-A。由正弦定理,得aAbAsinsin()sin1506230°°因此abAA262150()[sinsin()]°习题精选精讲2(62)sin75cos(75)624(62)cos(75)4(843)cos(75)843AAA·°°·°°∴a+b的最大值为843。例题5在△ABC中,已知a=2,b=22,C=15°,求A。错解:由余弦定理,得cabab222215cos°6248
本文标题:正弦定理习题精选精讲
链接地址:https://www.777doc.com/doc-5630460 .html