您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017-2019高考文数真题分类解析---立体几何(选择题、填空题)
12017-2019高考文数真题分类解析----立体几何(选择题、填空题)1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是∥的充分条件,由面面平行性质定理知,若∥,则内任意一条直线都与平行,所以内两条相交直线都与平行是∥的必要条件,故选B.【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,abab∥,则∥”此类的错误.2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B【解析】如图所示,作EOCD于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是2相交直线.过M作MFOD于F,连接BF,平面CDE平面ABCD,,EOCDEO平面CDE,EO平面ABCD,MF平面ABCD,MFB△与EON△均为直角三角形.设正方形边长为2,易知3,12EOONEN,,35,,722MFBFBM,BMEN,故选B.【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,3下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.4.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.βγ,αγB.βα,βγC.βα,γαD.αβ,γβ【答案】B【解析】如图,G为AC中点,连接VG,V在底面ABC的投影为O,则P在底面的投影D在线段AO上,过D作DE垂直于AC于E,连接PE,BD,易得PEVG∥,过P作PFAC∥交VG于F,连接BF,过D作DHAC∥,交BG于H,则,,BPFPBDPED,结合△PFB,△BDH,△PDB均为直角三角形,可得coscosPFEGDHBDPBPBPBPB,即;在Rt△PED中,tantanPDPDEDBD,即,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.5.【2018年高考全国Ⅰ卷文数】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的4路径中,最短路径的长度为A.172B.52C.3D.2【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点M在上底面上,点N在下底面上,且可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为224225,故选B.【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.6.【2018年高考全国Ⅲ卷文数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.【名师点睛】本题主要考查空间几何体的三视图,考查考生的空间想象能力和阅读理解能力,考查的5数学核心素养是直观想象.7.【2018年高考全国I卷文数】在长方体1111ABCDABCD中,2ABBC,1AC与平面11BBCC所成的角为30,则该长方体的体积为A.8B.62C.82D.83【答案】C【解析】在长方体1111ABCDABCD中,连接1BC,根据线面角的定义可知130ACB,因为2AB,所以123BC,从而求得122CC,所以该长方体的体积为222282V,故选C.【名师点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长、宽、高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,最终求得结果.8.【2018年高考全国I卷文数】已知圆柱的上、下底面的中心分别为1O,2O,过直线12OO的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.122πB.12πC.82πD.10π【答案】B6【解析】根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为22π22π22212πS,故选B.【名师点睛】该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.9.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A.2B.4C.6D.8【答案】C【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为112226,2故选C.【名师点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.10.【2018年高考全国Ⅲ卷文数】设ABCD,,,是同一个半径为4的球的球面上四点,ABC△为等边三角形且其面积为93,则三棱锥DABC体积的最大值为A.123B.183C.243D.543【答案】B【解析】如图所示,设点M为三角形ABC的重心,E为AC中点,侧视图俯视图正视图22117当点D在平面ABC上的射影为M时,三棱锥DABC的体积最大,此时,4ODOBR,23934ABCSAB△,6AB,点M为三角形ABC的重心,2233BMBE,RtOBM△中,有222OMOBBM,426DMODOM,max19361833DABCV,故选B.【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当点D在平面ABC上的射影为三角形ABC的重心时,三棱锥DABC体积最大很关键,由M为三角形ABC的重心,计算得到2233BMBE,再由勾股定理得到OM,进而得到结果,属于较难题型.11.【2018年高考全国Ⅱ卷文数】在正方体1111ABCDABCD中,E为棱1CC的中点,则异面直线AE与CD所成角的正切值为A.22B.32C.52D.72【答案】C【解析】如图,在正方体1111ABCDABCD中,CDAB∥,所以异面直线AE与CD所成角为EAB,设正方体边长为2a,则由E为棱1CC的中点,可得CEa,所以5BEa,则55tan22BEaEABABa.故选C.8【名师点睛】本题主要考查异面直线所成的角,考查考生的空间想象能力、化归与转化能力以及运算求解能力,考查的数学核心素养是直观想象、数学运算.求异面直线所成的角,需要将异面直线所成的角等价转化为相交直线所成的角,然后利用解三角形的知识加以求解.12.【2018年高考浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为,,mnmn∥,所以根据线面平行的判定定理得m∥.由m∥不能得出m与内任一直线平行,所以mn∥是m∥的充分不必要条件,故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的充分条件.(2)等价法:利用p⇒q与非q⇒非p,q⇒p与非p⇒非q,p⇔q与非q⇔非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.13.【2018年高考浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19【答案】D【解析】设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,SE,SM,OM,OE,则SO垂直于底面ABCD,OM垂直于AB,因此123,,,SENSEOSMO从而123tan,tan,tan,SNSNSOSOENOMEOOM因为SNSOEOOM,,所以132tantantan,即132,故选D.【名师点睛】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.14.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4【答案】C【解析】由三视图可得四棱锥PABCD如图所示,10在四棱锥PABCD中,2,2,2,1PDADCDAB,由勾股定理可知:22,22,3,5PAPCPBBC,则在四棱锥中,直角三角形有:,,PADPCDPAB△△△,共3个,故选C.【名师点睛】此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.解答本题时,根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.15.【2017年高考全国Ⅰ卷文数】如
本文标题:2017-2019高考文数真题分类解析---立体几何(选择题、填空题)
链接地址:https://www.777doc.com/doc-5656432 .html